Non-<i>β</i>-Lactam Allosteric Inhibitors Target Methicillin-Resistant <i>Staphylococcus aureus</i>: An <i>In Silico</i> Drug Discovery Study

Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate <i>β</i>-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant <i>Staphylococcus aureus<...

Full description

Saved in:
Bibliographic Details
Main Authors: Mahmoud A. A. Ibrahim (Author), Khlood A. A. Abdeljawaad (Author), Alaa H. M. Abdelrahman (Author), Othman R. Alzahrani (Author), Fahad M. Alshabrmi (Author), Esraa Khalaf (Author), Mahmoud F. Moustafa (Author), Faris Alrumaihi (Author), Khaled S. Allemailem (Author), Mahmoud E. S. Soliman (Author), Paul W. Paré (Author), Mohamed-Elamir F. Hegazy (Author), Mohamed A. M. Atia (Author)
Format: Book
Published: MDPI AG, 2021-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_74fc6dc8aba64b78bd912c4a5f39d81a
042 |a dc 
100 1 0 |a Mahmoud A. A. Ibrahim  |e author 
700 1 0 |a Khlood A. A. Abdeljawaad  |e author 
700 1 0 |a Alaa H. M. Abdelrahman  |e author 
700 1 0 |a Othman R. Alzahrani  |e author 
700 1 0 |a Fahad M. Alshabrmi  |e author 
700 1 0 |a Esraa Khalaf  |e author 
700 1 0 |a Mahmoud F. Moustafa  |e author 
700 1 0 |a Faris Alrumaihi  |e author 
700 1 0 |a Khaled S. Allemailem  |e author 
700 1 0 |a Mahmoud E. S. Soliman  |e author 
700 1 0 |a Paul W. Paré  |e author 
700 1 0 |a Mohamed-Elamir F. Hegazy  |e author 
700 1 0 |a Mohamed A. M. Atia  |e author 
245 0 0 |a Non-<i>β</i>-Lactam Allosteric Inhibitors Target Methicillin-Resistant <i>Staphylococcus aureus</i>: An <i>In Silico</i> Drug Discovery Study 
260 |b MDPI AG,   |c 2021-08-01T00:00:00Z. 
500 |a 10.3390/antibiotics10080934 
500 |a 2079-6382 
520 |a Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate <i>β</i>-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). A double mutation in PBP2a (i.e., N146K and E150K) is resistant to <i>β</i>-lactam inhibitors; however, (<i>E</i>)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4<i>H</i>)-yl) benzoic acid (QNZ), a heterocyclic antibiotic devoid of a <i>β</i>-lactam ring, interacts non-covalently with PBP2a allosteric site and inhibits PBP enzymatic activity. In the search for novel inhibitors that target this PBP2a allosteric site in acidic medium, an <i>in silico</i> screening was performed. Chemical databases including eMolecules, ChEMBL, and ChEBI were virtually screened for candidate inhibitors with a physicochemical similarity to QNZ. PBP2a binding affinities from the screening were calculated based on molecular docking with co-crystallized ligand QNZ serving as a reference. Molecular minimization calculations were performed for inhibitors with docking scores lower than QNZ (calc. −8.3 kcal/mol) followed by combined MD simulations and MM-GBSA binding energy calculations. Compounds eMol26313223 and eMol26314565 exhibited promising inhibitor activities based on binding affinities (Δ<i>G</i><sub>binding</sub>) that were twice that of QNZ (−38.5, −34.5, and −15.4 kcal/mol, respectively). Structural and energetic analyses over a 50 ns MD simulation revealed high stability for the inhibitors when complexed with the double mutated PBP2a. The pharmacokinetic properties of the two inhibitors were predicted using an <i>in silico</i> ADMET analysis. Calculated binding affinities hold promise for eMol26313223 and eMol26314565 as allosteric inhibitors of PBP2a in acidic medium and establish that further <i>in vitro</i> and <i>in vivo</i> inhibition experimentation is warranted. 
546 |a EN 
690 |a <i>Staphylococcus aureus</i> 
690 |a PBP2a 
690 |a <i>MecA</i> 
690 |a pharmacophore 
690 |a molecular docking 
690 |a molecular dynamics simulations 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antibiotics, Vol 10, Iss 8, p 934 (2021) 
787 0 |n https://www.mdpi.com/2079-6382/10/8/934 
787 0 |n https://doaj.org/toc/2079-6382 
856 4 1 |u https://doaj.org/article/74fc6dc8aba64b78bd912c4a5f39d81a  |z Connect to this object online.