AI-enabled workflow for automated classification and analysis of feto-placental Doppler images

IntroductionExtraction of Doppler-based measurements from feto-placental Doppler images is crucial in identifying vulnerable new-borns prenatally. However, this process is time-consuming, operator dependent, and prone to errors.MethodsTo address this, our study introduces an artificial intelligence...

Full description

Saved in:
Bibliographic Details
Main Authors: Ainhoa M. Aguado (Author), Guillermo Jimenez-Perez (Author), Devyani Chowdhury (Author), Josa Prats-Valero (Author), Sergio Sánchez-Martínez (Author), Zahra Hoodbhoy (Author), Shazia Mohsin (Author), Roberta Castellani (Author), Lea Testa (Author), Fàtima Crispi (Author), Bart Bijnens (Author), Babar Hasan (Author), Gabriel Bernardino (Author)
Format: Book
Published: Frontiers Media S.A., 2024-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_74ffeb17047b47dba130286e2d7b4b29
042 |a dc 
100 1 0 |a Ainhoa M. Aguado  |e author 
700 1 0 |a Ainhoa M. Aguado  |e author 
700 1 0 |a Guillermo Jimenez-Perez  |e author 
700 1 0 |a Guillermo Jimenez-Perez  |e author 
700 1 0 |a Devyani Chowdhury  |e author 
700 1 0 |a Josa Prats-Valero  |e author 
700 1 0 |a Josa Prats-Valero  |e author 
700 1 0 |a Sergio Sánchez-Martínez  |e author 
700 1 0 |a Zahra Hoodbhoy  |e author 
700 1 0 |a Shazia Mohsin  |e author 
700 1 0 |a Roberta Castellani  |e author 
700 1 0 |a Lea Testa  |e author 
700 1 0 |a Fàtima Crispi  |e author 
700 1 0 |a Fàtima Crispi  |e author 
700 1 0 |a Bart Bijnens  |e author 
700 1 0 |a Bart Bijnens  |e author 
700 1 0 |a Bart Bijnens  |e author 
700 1 0 |a Babar Hasan  |e author 
700 1 0 |a Gabriel Bernardino  |e author 
245 0 0 |a AI-enabled workflow for automated classification and analysis of feto-placental Doppler images 
260 |b Frontiers Media S.A.,   |c 2024-10-01T00:00:00Z. 
500 |a 2673-253X 
500 |a 10.3389/fdgth.2024.1455767 
520 |a IntroductionExtraction of Doppler-based measurements from feto-placental Doppler images is crucial in identifying vulnerable new-borns prenatally. However, this process is time-consuming, operator dependent, and prone to errors.MethodsTo address this, our study introduces an artificial intelligence (AI) enabled workflow for automating feto-placental Doppler measurements from four sites (i.e., Umbilical Artery (UA), Middle Cerebral Artery (MCA), Aortic Isthmus (AoI) and Left Ventricular Inflow and Outflow (LVIO)), involving classification and waveform delineation tasks. Derived from data from a low- and middle-income country, our approach's versatility was tested and validated using a dataset from a high-income country, showcasing its potential for standardized and accurate analysis across varied healthcare settings.ResultsThe classification of Doppler views was approached through three distinct blocks: (i) a Doppler velocity amplitude-based model with an accuracy of 94%, (ii) two Convolutional Neural Networks (CNN) with accuracies of 89.2% and 67.3%, and (iii) Doppler view- and dataset-dependent confidence models to detect misclassifications with an accuracy higher than 85%. The extraction of Doppler indices utilized Doppler-view dependent CNNs coupled with post-processing techniques. Results yielded a mean absolute percentage error of 6.1 ± 4.9% (n = 682), 1.8 ± 1.5% (n = 1,480), 4.7 ± 4.0% (n = 717), 3.5 ± 3.1% (n = 1,318) for the magnitude location of the systolic peak in LVIO, UA, AoI and MCA views, respectively.ConclusionsThe developed models proved to be highly accurate in classifying Doppler views and extracting essential measurements from Doppler images. The integration of this AI-enabled workflow holds significant promise in reducing the manual workload and enhancing the efficiency of feto-placental Doppler image analysis, even for non-trained readers. 
546 |a EN 
690 |a artificial intelligence 
690 |a convolutional neural networks 
690 |a deep learning 
690 |a ultrasound view classification 
690 |a ultrasound waveform delineation 
690 |a feto-placental Doppler 
690 |a Medicine 
690 |a R 
690 |a Public aspects of medicine 
690 |a RA1-1270 
690 |a Electronic computers. Computer science 
690 |a QA75.5-76.95 
655 7 |a article  |2 local 
786 0 |n Frontiers in Digital Health, Vol 6 (2024) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fdgth.2024.1455767/full 
787 0 |n https://doaj.org/toc/2673-253X 
856 4 1 |u https://doaj.org/article/74ffeb17047b47dba130286e2d7b4b29  |z Connect to this object online.