AI-enabled workflow for automated classification and analysis of feto-placental Doppler images
IntroductionExtraction of Doppler-based measurements from feto-placental Doppler images is crucial in identifying vulnerable new-borns prenatally. However, this process is time-consuming, operator dependent, and prone to errors.MethodsTo address this, our study introduces an artificial intelligence...
Saved in:
Main Authors: | Ainhoa M. Aguado (Author), Guillermo Jimenez-Perez (Author), Devyani Chowdhury (Author), Josa Prats-Valero (Author), Sergio Sánchez-Martínez (Author), Zahra Hoodbhoy (Author), Shazia Mohsin (Author), Roberta Castellani (Author), Lea Testa (Author), Fàtima Crispi (Author), Bart Bijnens (Author), Babar Hasan (Author), Gabriel Bernardino (Author) |
---|---|
Format: | Book |
Published: |
Frontiers Media S.A.,
2024-10-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
by: Babar S Hasan, et al.
Published: (2023) -
El estrés en personal sanitario hospitalario: estado actual
by: José Ignacio Aguado Martín, et al.
Published: (2013) -
Índice de calidad de vida en pacientes pediátricos con epidermólisis bullosa y en sus cuidadores principales
by: Rebeca Rodríguez Fernández, et al.
Published: (2024) -
The need for detailed COVID-19 data in Spain
by: Sergi Trias-Llimós, et al.
Published: (2020) -
Blood pressure in young adulthood and residential greenness in the early-life environment of twins
by: Esmée M Bijnens, et al.
Published: (2017)