C-Myc Expression in Oral Squamous Cell Carcinoma: Molecular Mechanisms in Cell Survival and Cancer Progression

Oral squamous cell carcinoma (OSCC) represents 90% of malignant epithelial cancer that occurs in the oral cavity. The c-Myc factor is expressed in multiple types of cancer, comprising head and neck squamous cell carcinoma (HNSCC), where it plays a fundamental role in tumor prognosis and in the self-...

Full description

Saved in:
Bibliographic Details
Main Authors: Guya Diletta Marconi (Author), Ylenia Della Rocca (Author), Luigia Fonticoli (Author), Francesco Melfi (Author), Thangavelu Soundara Rajan (Author), Simone Carradori (Author), Jacopo Pizzicannella (Author), Oriana Trubiani (Author), Francesca Diomede (Author)
Format: Book
Published: MDPI AG, 2022-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oral squamous cell carcinoma (OSCC) represents 90% of malignant epithelial cancer that occurs in the oral cavity. The c-Myc factor is expressed in multiple types of cancer, comprising head and neck squamous cell carcinoma (HNSCC), where it plays a fundamental role in tumor prognosis and in the self-renewal of tumor stem cells. However, the role of c-Myc in controlling OSCC cells is not well-known. The aim of the present study is the evaluation of the biological roles and regulatory mechanism of c-Myc in the pathogenesis of OSCC. Results indicated that c-Myc, c-Jun, Bcl-2, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), ERK 1/2 and pERK1/2 were overexpressed in a cellular model of squamous cell carcinoma, Cal-27. Doxorubicin (Doxo), a common chemotherapeutic agent, inhibited cell invasion, hypoxia, angiogenesis and inflammation in a cellular model of Cal-27 cells as indicated by downregulation of MMP-9, VEGF, ERK 1/2 and pERK 1/2 as well as promoted apoptosis as evidenced by the downregulation of Bcl-2 protein. This work aimed at underlying the functional relevance of c-Myc in OSCC and the HIF-Myc collaboration by integrating the knowledge on this molecular link in an OSCC tumor microenvironment. The results obtained showed for the first time the vital role of c-Myc in Cal-27 in cell survival/proliferation and tumor growth as well as the negative regulatory effect of Doxo against c-Myc signaling pathway.
Item Description:10.3390/ph15070890
1424-8247