High Throughput Screening of Additives Using Factorial Design to Promote Survival of Stored Cultured Epithelial Sheets

There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undiff...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autori principali: Sjur Reppe (Autore), Catherine Joan Jackson (Autore), Håkon Ringstad (Autore), Kim Alexander Tønseth (Autore), Hege Bakke (Autore), Jon Roger Eidet (Autore), Tor Paaske Utheim (Autore)
Natura: Libro
Pubblicazione: Hindawi Limited, 2018-01-01T00:00:00Z.
Soggetti:
Accesso online:Connect to this object online.
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
Descrizione
Riassunto:There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undifferentiated epidermal cells using multifactorial design and an automated screening procedure. The cultured cells were stored for 7-11 days at 12°C in media supplemented with various additives. Effects were evaluated by calcein staining of live cells as well as morphology. Twenty-six additives were tested using (1) a two-level factorial design in which 10 additives were added or omitted in 64 different combinations and (2) a mixture design with 5 additives at 5 different concentrations in a total of 64 different mixtures. Automated microscopy and cell counting with Fiji enabled efficient processing of data. Significant regression models were identified by Design-Expert software. A calculated maximum increase of live cells to 37 ± 6% was achieved upon storage of cell sheets for 11 days in the presence of 6% glycerol. The beneficial effect of glycerol was shown for epidermal cell sheets from three different donors in two different storage media and with two different factorial designs. We have thus developed a high throughput screening system enabling robust assessment of live cells and identified glycerol as a beneficial additive that has a positive effect on epidermal cell sheet upon storage at 12°C. We believe this method could be of use in other cell culture optimization strategies where a large number of conditions are compared for their effect on cell viability or other quantifiable dependent variables.
Descrizione del documento:1687-966X
1687-9678
10.1155/2018/6545876