Bio‐functional hydrogel with antibacterial and anti‐inflammatory dual properties to combat with burn wound infection
Abstract Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti‐inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Book |
Published: |
Wiley,
2023-01-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Burn infection delays wound healing and increases the burn patient mortality. Consequently, a new dressing with antibacterial and anti‐inflammatory dual properties is urgently required for wound healing. In this study, we propose a combination of methacrylate gelatin (GelMA) hydrogel system with silver nanoparticles embed in γ‐cyclodextrin metal-organic frameworks (Ag@MOF) and hyaluronic acid‐epigallocatechin gallate (HA‐E) for the burn wound infection treatment. Ag@MOF is used as an antibacterial agent and epigallocatechin gallate (EGCG) has exhibited biological properties of anti‐inflammation and antibacterial. The GelMA/HA‐E/Ag@MOF hydrogel enjoys suitable physical properties and sustained release of Ag+. Meanwhile, the hydrogel has excellent biocompatibility and could promote macrophage polarization from M1 to M2. In vivo wound healing evaluations further demonstrate that the GelMA/HA‐E/Ag@MOF hydrogel reduces the number of the bacterium efficiently, accelerates wound healing, promotes early angiogenesis, and regulates immune reaction. A further evaluation indicates that the noncanonical Wnt signal pathway is significantly activated in the GelMA/HA‐E/Ag@MOF hydrogel treated group. In conclusion, the GelMA/HA‐E/Ag@MOF hydrogel could serve as a promising multifunctional dressing for the burn wound healing. |
---|---|
Item Description: | 2380-6761 10.1002/btm2.10373 |