Individual-Level Fatality Prediction of COVID-19 Patients Using AI Methods

The global covid-19 pandemic puts great pressure on medical resources worldwide and leads healthcare professionals to question which individuals are in imminent need of care. With appropriate data of each patient, hospitals can heuristically predict whether or not a patient requires immediate care....

Full description

Saved in:
Bibliographic Details
Main Authors: Yun Li (Author), Melanie Alfonzo Horowitz (Author), Jiakang Liu (Author), Aaron Chew (Author), Hai Lan (Author), Qian Liu (Author), Dexuan Sha (Author), Chaowei Yang (Author)
Format: Book
Published: Frontiers Media S.A., 2020-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_7a85eae2b3e347cbbd3817f5a8f60ec2
042 |a dc 
100 1 0 |a Yun Li  |e author 
700 1 0 |a Yun Li  |e author 
700 1 0 |a Melanie Alfonzo Horowitz  |e author 
700 1 0 |a Jiakang Liu  |e author 
700 1 0 |a Aaron Chew  |e author 
700 1 0 |a Hai Lan  |e author 
700 1 0 |a Hai Lan  |e author 
700 1 0 |a Qian Liu  |e author 
700 1 0 |a Qian Liu  |e author 
700 1 0 |a Dexuan Sha  |e author 
700 1 0 |a Dexuan Sha  |e author 
700 1 0 |a Chaowei Yang  |e author 
700 1 0 |a Chaowei Yang  |e author 
245 0 0 |a Individual-Level Fatality Prediction of COVID-19 Patients Using AI Methods 
260 |b Frontiers Media S.A.,   |c 2020-09-01T00:00:00Z. 
500 |a 2296-2565 
500 |a 10.3389/fpubh.2020.587937 
520 |a The global covid-19 pandemic puts great pressure on medical resources worldwide and leads healthcare professionals to question which individuals are in imminent need of care. With appropriate data of each patient, hospitals can heuristically predict whether or not a patient requires immediate care. We adopted a deep learning model to predict fatality of individuals tested positive given the patient's underlying health conditions, age, sex, and other factors. As the allocation of resources toward a vulnerable patient could mean the difference between life and death, a fatality prediction model serves as a valuable tool to healthcare workers in prioritizing resources and hospital space. The models adopted were evaluated and refined using the metrics of accuracy, specificity, and sensitivity. After data preprocessing and training, our model is able to predict whether a covid-19 confirmed patient is likely to be dead or not, given their information and disposition. The metrics between the different models are compared. Results indicate that the deep learning model outperforms other machine learning models to solve this rare event prediction problem. 
546 |a EN 
690 |a COVID-19 
690 |a machine learning 
690 |a deep learning 
690 |a pandemic 
690 |a rare event 
690 |a fatality prediction 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n Frontiers in Public Health, Vol 8 (2020) 
787 0 |n https://www.frontiersin.org/article/10.3389/fpubh.2020.587937/full 
787 0 |n https://doaj.org/toc/2296-2565 
856 4 1 |u https://doaj.org/article/7a85eae2b3e347cbbd3817f5a8f60ec2  |z Connect to this object online.