Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle

<p>Abstract</p> <p>Background</p> <p>The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression profiles of whole lung tissue...

Full description

Saved in:
Bibliographic Details
Main Authors: Morrison Lake D (Author), Onaitis Mark W (Author), Lin Shu S (Author), Davis Robert D (Author), D'Amico Thomas A (Author), Barry William T (Author), Meltzer Eric B (Author), Sporn Thomas A (Author), Steele Mark P (Author), Noble Paul W (Author)
Format: Book
Published: BMC, 2011-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_7b558b3a935049acafbb8647916dfebe
042 |a dc 
100 1 0 |a Morrison Lake D  |e author 
700 1 0 |a Onaitis Mark W  |e author 
700 1 0 |a Lin Shu S  |e author 
700 1 0 |a Davis Robert D  |e author 
700 1 0 |a D'Amico Thomas A  |e author 
700 1 0 |a Barry William T  |e author 
700 1 0 |a Meltzer Eric B  |e author 
700 1 0 |a Sporn Thomas A  |e author 
700 1 0 |a Steele Mark P  |e author 
700 1 0 |a Noble Paul W  |e author 
245 0 0 |a Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle 
260 |b BMC,   |c 2011-10-01T00:00:00Z. 
500 |a 10.1186/1755-8794-4-70 
500 |a 1755-8794 
520 |a <p>Abstract</p> <p>Background</p> <p>The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression profiles of whole lung tissue.</p> <p>Methods</p> <p>Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF) undergoing surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed cluster analyses to explore differences in our dataset. No significant difference was found between samples obtained from different lobes of the same patient. A significant difference was found between samples obtained at biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared to controls); the second signature was developed from the subset of IPF samples obtained at biopsy; the third signature was developed from IPF explants. To assess the validity of each signature, we used an independent cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal) in samples from the validation cohort. We compared the models' predictions to the true phenotype of each validation sample, and then calculated sensitivity, specificity and accuracy.</p> <p>Results</p> <p>Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small differences in test sensitivity, specificity and overall accuracy.</p> <p>Conclusions</p> <p>This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to develop predictive models for cancer. This also represents the first report of an independently validated IPF gene expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from non-neoplastic lung tissue. In the future, BPR might be used to develop definitive diagnostic gene signatures for IPF, prognostic gene signatures for IPF or gene signatures for other non-neoplastic lung disorders such as bronchiolitis obliterans.</p> 
546 |a EN 
690 |a Internal medicine 
690 |a RC31-1245 
690 |a Genetics 
690 |a QH426-470 
655 7 |a article  |2 local 
786 0 |n BMC Medical Genomics, Vol 4, Iss 1, p 70 (2011) 
787 0 |n http://www.biomedcentral.com/1755-8794/4/70 
787 0 |n https://doaj.org/toc/1755-8794 
856 4 1 |u https://doaj.org/article/7b558b3a935049acafbb8647916dfebe  |z Connect to this object online.