Variation in Zn, C, and N isotope ratios in three stream insects

Total Zn concentrations and Zn isotope ratios were measured, using multicollector inductively coupled plasma (ICP)-mass spectrometry (MS), in three species of aquatic insects collected from a stream in Peterborough, Ontario, Canada. Total Zn levels averaged 193 ± 88 μg/g dry weight (dw) in water str...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Douglas Evans (Author), Wei Wang (Author), Hayla E. Evans (Author), R. Bastian Georg (Author)
Format: Book
Published: Canadian Science Publishing, 2016-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Total Zn concentrations and Zn isotope ratios were measured, using multicollector inductively coupled plasma (ICP)-mass spectrometry (MS), in three species of aquatic insects collected from a stream in Peterborough, Ontario, Canada. Total Zn levels averaged 193 ± 88 μg/g dry weight (dw) in water striders (Heteroptera: Gerridae, Aquarius remigis) and were significantly higher than the concentrations measured in stonefly nymphs (Plecoptera: Perlidae, Acroneuria abnormis) and caddisfly larvae (Trichoptera: Limnephilidae, Pycnopsyche guttifer), i.e., 136 ± 34 μg/g dw and 125 ± 26 μg/g dw, respectively. Average delta values for 66Zn/64Zn in the water striders were approximately 0.7‰ lighter (−1.2‰ ± 1.0‰) and were significantly different than those measured for stoneflies (−0.45‰ ± 0.62‰) and caddisflies (−0.51‰ ± 0.54‰). Nitrogen isotope ratios were significantly different (P < 0.05) among the three species suggesting differences in trophic positioning. Similar to the Zn isotope ratios, δ 13C values for the water striders (−28.61‰ ± 0.98‰) were significantly different than those of the stoneflies and caddisflies, i.e., −30.75‰ ± 1.33‰ and −30.68‰ ± 1.01‰, respectively. The data suggest that the differences observed in Zn ratios relate to food source for these insects. Similar to their carbon sources, Zn in water striders appears to be primarily of terrestrial origin, and of aquatic origin for the other two species.
Item Description:10.1139/facets-2016-0023
2371-1671
2371-1671