The Antibiotic Kitasamycin-A Potential Agent for Specific Fibrosis Preventing Therapy after Fistulating Glaucoma Surgery?

One major complication after fistulating glaucoma surgeries are fibroblast-mediated scarring processes and their specific prevention is key in the development of novel pharmaceutical concepts. Within this study a possible antifibrotic potential of kitasamycin (KM) in a transforming growth factor (TG...

Full description

Saved in:
Bibliographic Details
Main Authors: Katharina A. Sterenczak (Author), Georg Fuellen (Author), Anselm Jünemann (Author), Rudolf F. Guthoff (Author), Oliver Stachs (Author), Thomas Stahnke (Author)
Format: Book
Published: MDPI AG, 2023-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One major complication after fistulating glaucoma surgeries are fibroblast-mediated scarring processes and their specific prevention is key in the development of novel pharmaceutical concepts. Within this study a possible antifibrotic potential of kitasamycin (KM) in a transforming growth factor (TGF)-β1-mediated fibroblast model was evaluated <i>in vitro</i>. Primary ocular fibroblasts were isolated, cultivated and a dose-response test including determination of the half maximal effective concentration (EC50) for KM was conducted. Transformation of fibroblasts into myofibroblasts was induced by TGF-β1and immunofluorescence (IF), and Western blot (WB) analyses were performed with fibroblasts and myofibroblasts. IF analyses were carried out using antibodies against α-smooth muscle actin (α-SMA) and fibronectin, and protein detection of intracellular and extracellular proteins was performed by WB. Using the dose-response test, the viability, cytotoxicity and EC50 of KM after 24 and 48 h were determined. Fibroblasts exposed to various KM concentrations showed no increase in α-SMA and extracellular matrix expression. In TGF-ß1-stimulated myofibroblasts, KM inhibited the expression of α-SMA and fibronectin in a concentration-dependent manner. These findings demonstrate that KM could impair the transformation of fibroblasts into myofibroblasts and the expression of proteins involved in fibrotic processes, representing a potential agent for specific fibrosis prevention in future therapeutic concepts.
Item Description:10.3390/pharmaceutics15020329
1999-4923