Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns?

Abstract To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in poly...

Full description

Saved in:
Bibliographic Details
Main Authors: Monize Carelli Felipe Antunes (Author), Jean Soares Miranda (Author), Ronaldo Luís Almeida de Carvalho (Author), Rodrigo Furtado de Carvalho (Author), Estevão Tomomitsu Kimpara (Author), Rodrigo Othávio de Assunção E Souza (Author), Fabíola Pessôa Pereira Leite (Author)
Format: Book
Published: Sociedade Brasileira de Pesquisa Odontológica, 2018-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.
Item Description:1807-3107
10.1590/1807-3107bor-2018.vol32.0034