The Anti-Microbial Peptide (Lin-SB056-1)<sub>2</sub>-K Reduces Pro-Inflammatory Cytokine Release through Interaction with <i>Pseudomonas aeruginosa</i> Lipopolysaccharide
The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2020-09-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)<sub>2</sub>-K, which were previously found to have anti-microbial activity against <i>Pseudomonas aeruginosa</i> in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with <i>P. aeruginosa</i> lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)<sub>2</sub>-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)<sub>2</sub>-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections. |
---|---|
Item Description: | 10.3390/antibiotics9090585 2079-6382 |