Prediction of Antitubercular Peptides From Sequence Information Using Ensemble Classifier and Hybrid Features

Tuberculosis is one of the leading cause of death worldwide, particularly due to evolution of drug resistant strains. Antitubercular peptides may provide an alternate approach to combat antibiotic tolerance. Sequence analysis reveals that certain residues (e.g., Lysine, Arginine, Leucine, Tryptophan...

Full description

Saved in:
Bibliographic Details
Main Authors: Salman Sadullah Usmani (Author), Sherry Bhalla (Author), Gajendra P. S. Raghava (Author)
Format: Book
Published: Frontiers Media S.A., 2018-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8550fd6502474fdca66a8941027e84d1
042 |a dc 
100 1 0 |a Salman Sadullah Usmani  |e author 
700 1 0 |a Salman Sadullah Usmani  |e author 
700 1 0 |a Sherry Bhalla  |e author 
700 1 0 |a Gajendra P. S. Raghava  |e author 
700 1 0 |a Gajendra P. S. Raghava  |e author 
245 0 0 |a Prediction of Antitubercular Peptides From Sequence Information Using Ensemble Classifier and Hybrid Features 
260 |b Frontiers Media S.A.,   |c 2018-08-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2018.00954 
520 |a Tuberculosis is one of the leading cause of death worldwide, particularly due to evolution of drug resistant strains. Antitubercular peptides may provide an alternate approach to combat antibiotic tolerance. Sequence analysis reveals that certain residues (e.g., Lysine, Arginine, Leucine, Tryptophan) are more prevalent in antitubercular peptides. This study describes the models developed for predicting antitubercular peptides by using sequence features of the peptides. We have developed support vector machine based models using different sequence features like amino acid composition, binary profile of terminus residues, dipeptide composition. Our ensemble classifiers that combines models based on amino acid composition and N5C5 binary pattern, achieves highest Acc of 73.20% with 0.80 AUROC on our main dataset. Similarly, the ensemble classifier achieved maximum Acc 75.62% with 0.83 AUROC on secondary dataset. Beside this, hybrid model achieves Acc of 75.87 and 78.54% with 0.83 and 0.86 AUROC on main and secondary dataset, respectively. In order to facilitate scientific community in designing of antitubercular peptides, we implement above models in a user friendly webserver (http://webs.iiitd.edu.in/raghava/antitbpred/). 
546 |a EN 
690 |a tuberculosis 
690 |a antitubercular peptides 
690 |a machine learning 
690 |a antimycobacterial therapy 
690 |a Mycobacterium 
690 |a ensemble classifier 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 9 (2018) 
787 0 |n https://www.frontiersin.org/article/10.3389/fphar.2018.00954/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/8550fd6502474fdca66a8941027e84d1  |z Connect to this object online.