circ_0101802 functions as a sponge of miR-1236-3p to facilitate the proliferation, migration and invasion of colorectal cancer via regulating MACC1

Circular RNAs (circRNAs) have been shown to be involved in the progression of many diseases, including cancer. However, the role of circ_0101802 in the proliferation, migration and invasion of colorectal cancer (CRC) has not been studied. Our results showed that circ_0101802 was highly expressed in...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Bai (Author), Zhifeng Gao (Author), An Jiang (Author), Song Ren (Author), Baotai Wang (Author)
Format: Book
Published: Elsevier, 2021-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Circular RNAs (circRNAs) have been shown to be involved in the progression of many diseases, including cancer. However, the role of circ_0101802 in the proliferation, migration and invasion of colorectal cancer (CRC) has not been studied. Our results showed that circ_0101802 was highly expressed in CRC tumor tissues and cells. Functional experiments suggested that circ_0101802 knockdown could inhibit the proliferation, migration and invasion of CRC cells in vitro and CRC tumorigenesis in vivo. In the terms of mechanism, we discovered that circ_0101802 could act as a sponge of miR-1236-3p, and miR-1236-3p could target MACC1. The rescue experiments revealed that miR-1236-3p inhibitor could reverse the inhibition effect of circ_0101802 silencing on CRC proliferation, migration and invasion, and MACC1 overexpression also could abolish the negative regulation of miR-1236-3p on CRC proliferation, migration and invasion. More important, our data confirmed that circ_0101802 sponged miR-1236-3p to positively regulate MACC1. In summary, our results revealed that circ_0101802 functioned as a tumor promoter in CRC, which could facilitate CRC proliferation, migration and invasion via regulating the miR-1236-3p/MACC1 axis.
Item Description:1347-8613
10.1016/j.jphs.2021.06.002