An easy iris center detection method for eye gaze tracking system

Iris center detection accuracy has great impact on eye gaze tracking system performance. This paper proposes an easy and efficient iris center detection method based on modeling the geometric relationship between the detected rough iris center and the two corners of the eye. The method fully conside...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingxin Yu (Author), Yingzi Lin (Author), Xiaoying Tang (Author), Jing Xu (Author), David Schmidt (Author), Xiangzhou Wang (Author), Yikang Guo (Author)
Format: Book
Published: Bern Open Publishing, 2015-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_85c46eb39b1b4c0dad61d0789b9676d1
042 |a dc 
100 1 0 |a Mingxin Yu  |e author 
700 1 0 |a Yingzi Lin  |e author 
700 1 0 |a Xiaoying Tang  |e author 
700 1 0 |a Jing Xu  |e author 
700 1 0 |a David Schmidt  |e author 
700 1 0 |a Xiangzhou Wang  |e author 
700 1 0 |a Yikang Guo  |e author 
245 0 0 |a An easy iris center detection method for eye gaze tracking system 
260 |b Bern Open Publishing,   |c 2015-10-01T00:00:00Z. 
500 |a 10.16910/jemr.8.3.5 
500 |a 1995-8692 
520 |a Iris center detection accuracy has great impact on eye gaze tracking system performance. This paper proposes an easy and efficient iris center detection method based on modeling the geometric relationship between the detected rough iris center and the two corners of the eye. The method fully considers four states of iris within the eye region, i.e. center, left, right, and upper. The proposed active edge detection algorithm is utilized to extract iris edge points for ellipse fitting. In addition, this paper also presents a predicted edge point algorithm to solve the decrease in ellipse fitting accuracy, when part of the iris becomes hidden from rolling into a nasal or temporal eye corner. The evaluated result of the method on our eye database shows the global average accuracy of 94.3%. Compared with existing methods, our method achieves the highest iris center detection accuracy. Additionally, in order to test the performance of the proposed method in gaze tracking, this paper presents the results of gaze estimation achieved by our eye gaze tracking system. 
546 |a EN 
690 |a iris detection 
690 |a eye gaze tracking 
690 |a active edge detection algorithm 
690 |a predicted edge points algorithm 
690 |a Human anatomy 
690 |a QM1-695 
655 7 |a article  |2 local 
786 0 |n Journal of Eye Movement Research, Vol 8, Iss 3 (2015) 
787 0 |n https://bop.unibe.ch/JEMR/article/view/2407 
787 0 |n https://doaj.org/toc/1995-8692 
856 4 1 |u https://doaj.org/article/85c46eb39b1b4c0dad61d0789b9676d1  |z Connect to this object online.