Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain

The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reprodu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nergis Zeynep Renkler (VerfasserIn), Stefania Scialla (VerfasserIn), Teresa Russo (VerfasserIn), Ugo D'Amora (VerfasserIn), Iriczalli Cruz-Maya (VerfasserIn), Roberto De Santis (VerfasserIn), Vincenzo Guarino (VerfasserIn)
Format: Buch
Veröffentlicht: MDPI AG, 2024-01-01T00:00:00Z.
Schlagworte:
Online-Zugang:Connect to this object online.
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_868fc786f2b3485285a8fc1f9e6193e2
042 |a dc 
100 1 0 |a Nergis Zeynep Renkler  |e author 
700 1 0 |a Stefania Scialla  |e author 
700 1 0 |a Teresa Russo  |e author 
700 1 0 |a Ugo D'Amora  |e author 
700 1 0 |a Iriczalli Cruz-Maya  |e author 
700 1 0 |a Roberto De Santis  |e author 
700 1 0 |a Vincenzo Guarino  |e author 
245 0 0 |a Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain 
260 |b MDPI AG,   |c 2024-01-01T00:00:00Z. 
500 |a 10.3390/pharmaceutics16010134 
500 |a 1999-4923 
520 |a The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions. 
546 |a EN 
690 |a electro-fluid dynamics 
690 |a nanofibers 
690 |a nanoparticles 
690 |a fibrogels 
690 |a brain 
690 |a Pharmacy and materia medica 
690 |a RS1-441 
655 7 |a article  |2 local 
786 0 |n Pharmaceutics, Vol 16, Iss 1, p 134 (2024) 
787 0 |n https://www.mdpi.com/1999-4923/16/1/134 
787 0 |n https://doaj.org/toc/1999-4923 
856 4 1 |u https://doaj.org/article/868fc786f2b3485285a8fc1f9e6193e2  |z Connect to this object online.