Deep Domain Adaptation, Pseudo-Labeling, and Shallow Network for Accurate and Fast Gait Prediction of Unlabeled Datasets
Developing personalized gait phase prediction models is difficult because acquiring accurate gait phases requires expensive experiments. This problem can be addressed via semi-supervised domain adaptation (DA), which minimizes the discrepancy between the source and target subject features. However,...
Збережено в:
Автори: | Jaeyoung Na (Автор), Hyunwoo Kim (Автор), Giuk Lee (Автор), Woochul Nam (Автор) |
---|---|
Формат: | Книга |
Опубліковано: |
IEEE,
2023-01-01T00:00:00Z.
|
Предмети: | |
Онлайн доступ: | Connect to this object online. |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Схожі ресурси
Схожі ресурси
-
A 35-year comparison of children labelled as gifted, unlabelled as gifted and average-ability
за авторством: Joan Freeman
Опубліковано: (2014) -
Physics-Informed Deep Learning for Muscle Force Prediction With Unlabeled sEMG Signals
за авторством: Shuhao Ma, та інші
Опубліковано: (2024) -
Mathematics Trails: Shallow and Deep Gamification
за авторством: Iwan Gurjanow, та інші
Опубліковано: (2019) -
The Shallow and the Deep A biased introduction to neural networks and old school machine learning
за авторством: Biehl, Michael
Опубліковано: (2023) -
Shallow Soil
за авторством: Hamsun, Knut, 1859-1952; Hyllested, Carl Christian [Translator]