ABR-Attention: An Attention-Based Model for Precisely Localizing Auditory Brainstem Response

Auditory Brainstem Response (ABR) is an evoked potential in the brainstem’s neural centers in response to sound stimuli. Clinically, characteristic waves, especially Wave V latency, extracted from ABR can objectively indicate auditory loss and diagnose diseases. Several methods have been...

Full description

Saved in:
Bibliographic Details
Main Authors: Junyu Ji (Author), Xin Wang (Author), Xiaobei Jing (Author), Mingxing Zhu (Author), Hongguang Pan (Author), Desheng Jia (Author), Chunrui Zhao (Author), Xu Yong (Author), Yangjie Xu (Author), Guoru Zhao (Author), Poly Z.H. Sun (Author), Guanglin Li (Author), Shixiong Chen (Author)
Format: Book
Published: IEEE, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8b0743e8891d45e8a681d1412679c6e1
042 |a dc 
100 1 0 |a Junyu Ji  |e author 
700 1 0 |a Xin Wang  |e author 
700 1 0 |a Xiaobei Jing  |e author 
700 1 0 |a Mingxing Zhu  |e author 
700 1 0 |a Hongguang Pan  |e author 
700 1 0 |a Desheng Jia  |e author 
700 1 0 |a Chunrui Zhao  |e author 
700 1 0 |a Xu Yong  |e author 
700 1 0 |a Yangjie Xu  |e author 
700 1 0 |a Guoru Zhao  |e author 
700 1 0 |a Poly Z.H. Sun  |e author 
700 1 0 |a Guanglin Li  |e author 
700 1 0 |a Shixiong Chen  |e author 
245 0 0 |a ABR-Attention: An Attention-Based Model for Precisely Localizing Auditory Brainstem Response 
260 |b IEEE,   |c 2024-01-01T00:00:00Z. 
500 |a 1534-4320 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2024.3445936 
520 |a Auditory Brainstem Response (ABR) is an evoked potential in the brainstem&#x2019;s neural centers in response to sound stimuli. Clinically, characteristic waves, especially Wave V latency, extracted from ABR can objectively indicate auditory loss and diagnose diseases. Several methods have been developed for the extraction of characteristic waves. To ensure the effectiveness of the method, most of the methods are time-consuming and rely on the heavy workloads of clinicians. To reduce the workload of clinicians, automated extraction methods have been developed. However, the above methods also have limitations. This study introduces a novel deep learning network for automatic extraction of Wave V latency, named ABR-Attention. ABR-Attention model includes a self-attention module, first and second-derivative attention module, and regressor module. Experiments are conducted on the accuracy with 10-fold cross-validation, the effects on different sound pressure levels (SPLs), the effects of different error scales and the effects of ablation. ABR-Attention shows efficacy in extracting Wave V latency of ABR, with an overall accuracy of <inline-formula> <tex-math notation="LaTeX">$96.76~\pm ~0.41$ </tex-math></inline-formula>% and an error scale of 0.1ms, and provides a new solution for objective localization of ABR characteristic waves. 
546 |a EN 
690 |a Auditory brainstem response (ABR) 
690 |a deep learning network 
690 |a ABR-attention 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 32, Pp 3179-3188 (2024) 
787 0 |n https://ieeexplore.ieee.org/document/10639446/ 
787 0 |n https://doaj.org/toc/1534-4320 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/8b0743e8891d45e8a681d1412679c6e1  |z Connect to this object online.