A Light-Weight Text Summarization System for Fast Access to Medical Evidence
As the volume of published medical research continues to grow rapidly, staying up-to-date with the best-available research evidence regarding specific topics is becoming an increasingly challenging problem for medical experts and researchers. The current COVID19 pandemic is a good example of a topic...
Guardat en:
Autors principals: | Abeed Sarker (Autor), Yuan-Chi Yang (Autor), Mohammed Ali Al-Garadi (Autor), Aamir Abbas (Autor) |
---|---|
Format: | Llibre |
Publicat: |
Frontiers Media S.A.,
2020-12-01T00:00:00Z.
|
Matèries: | |
Accés en línia: | Connect to this object online. |
Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
Ítems similars
-
Developing an Automatic System for Classifying Chatter About Health Services on Twitter: Case Study for Medicaid
per: Yang, Yuan-Chi, et al.
Publicat: (2021) -
Signals of increasing co-use of stimulants and opioids from online drug forum data
per: Abeed Sarker, et al.
Publicat: (2022) -
Promoting Reproducible Research for Characterizing Nonmedical Use of Medications Through Data Annotation: Description of a Twitter Corpus and Guidelines
per: O'Connor, Karen, et al.
Publicat: (2020) -
Characteristics of Twitter Use by State Medicaid Programs in the United States: Machine Learning Approach
per: Zhu, Jane M, et al.
Publicat: (2020) -
Utilizing Mind Mapping to Summarize English Text with the Theme "American Culture"
per: Vivi Aulia
Publicat: (2017)