Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway
Renal fibrosis denotes a common complication of diabetic nephropathy and is a predominant cause of end-stage renal disease. Despite the association between microRNAs (miRNAs or miRs) and renal fibrosis, miRNAs have been reported to play a vital role in the development of chronic renal fibrosis. Ther...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book |
Published: |
Elsevier,
2020-03-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000 am a22000003u 4500 | ||
---|---|---|---|
001 | doaj_8bf4685090174ffda25e2bc7aa7d4ff4 | ||
042 | |a dc | ||
100 | 1 | 0 | |a Hong Ding |e author |
700 | 1 | 0 | |a Yanyan Xu |e author |
700 | 1 | 0 | |a Nan Jiang |e author |
245 | 0 | 0 | |a Upregulation of miR-101a Suppresses Chronic Renal Fibrosis by Regulating KDM3A via Blockade of the YAP-TGF-β-Smad Signaling Pathway |
260 | |b Elsevier, |c 2020-03-01T00:00:00Z. | ||
500 | |a 2162-2531 | ||
500 | |a 10.1016/j.omtn.2020.01.002 | ||
520 | |a Renal fibrosis denotes a common complication of diabetic nephropathy and is a predominant cause of end-stage renal disease. Despite the association between microRNAs (miRNAs or miRs) and renal fibrosis, miRNAs have been reported to play a vital role in the development of chronic renal fibrosis. Therefore, the aim of the present study was to investigate the possible function of miR-101a in chronic renal fibrosis. Initially, microarray-based gene expression profiling of renal fibrosis was employed to screen the differentially expressed genes. An in vivo mouse model of chronic renal fibrosis induced by a unilateral ureteral obstruction (UUO) and an in vitro cell model induced by aristolochic acid (AA) were constructed. miR-101a expression was examined using a fluorescence in situ hybridization (FISH) assay and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Then, the interaction between miR-101a and KDM3A was identified using an online website combined with a dual-luciferase reporter assay. Finally, gain- and loss-of-function experiments were conducted to elucidate the effect of miR-101a on the expression of Col1a1, fibronectin, α-smooth muscle actin (α-SMA), and YAP-TGF-β (transforming growth factor β)-Smad signaling pathway-related genes, as well as the degree of renal fibrosis. miR-101a was poorly expressed while KDM3A was robustly induced in chronic renal fibrosis tissues and cells. In addition, miR-101a could target and downregulate KDM3A expression, which led to elevated TGIF1, inhibited expression of Collagen I (Col1a1), fibronectin, α-SMA, YAP1, and TGF-β2 along with the extent of Smad2/3 phosphorylation, as well as delayed renal fibrosis degree. Besides, overexpressed YAP/TGF-β2 or inhibited TGIF1 partially restored the inhibitory effect of miR-101a on chronic renal fibrosis. Taken together, miR-101a could potentially slow down chronic renal fibrosis by the inactivation of the YAP-TGF-β-Smad signaling pathway via KDM3A, highlighting the potential of miR-101a as a therapeutic target for chronic renal fibrosis treatment. Keywords: chronic renal fibrosis, microRNA-101a, KDM3A, YAP-TGF-β-Smad signaling pathway, enhancer, TGIF1 | ||
546 | |a EN | ||
690 | |a Therapeutics. Pharmacology | ||
690 | |a RM1-950 | ||
655 | 7 | |a article |2 local | |
786 | 0 | |n Molecular Therapy: Nucleic Acids, Vol 19, Iss , Pp 1276-1289 (2020) | |
787 | 0 | |n http://www.sciencedirect.com/science/article/pii/S2162253120300366 | |
787 | 0 | |n https://doaj.org/toc/2162-2531 | |
856 | 4 | 1 | |u https://doaj.org/article/8bf4685090174ffda25e2bc7aa7d4ff4 |z Connect to this object online. |