Identification of Novel Antibacterials Using Machine Learning Techniques

Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available in silico models suffer from many drawb...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan A. Ivanenkov (Author), Alex Zhavoronkov (Author), Renat S. Yamidanov (Author), Ilya A. Osterman (Author), Petr V. Sergiev (Author), Vladimir A. Aladinskiy (Author), Anastasia V. Aladinskaya (Author), Victor A. Terentiev (Author), Mark S. Veselov (Author), Andrey A. Ayginin (Author), Victor G. Kartsev (Author), Dmitry A. Skvortsov (Author), Alexey V. Chemeris (Author), Alexey Kh. Baimiev (Author), Alina A. Sofronova (Author), Alexander S. Malyshev (Author), Gleb I. Filkov (Author), Dmitry S. Bezrukov (Author), Bogdan A. Zagribelnyy (Author), Evgeny O. Putin (Author), Maria M. Puchinina (Author), Olga A. Dontsova (Author)
Format: Book
Published: Frontiers Media S.A., 2019-08-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8c16a1d4d0ea467faf6fd76819573bdc
042 |a dc 
100 1 0 |a Yan A. Ivanenkov  |e author 
700 1 0 |a Yan A. Ivanenkov  |e author 
700 1 0 |a Yan A. Ivanenkov  |e author 
700 1 0 |a Yan A. Ivanenkov  |e author 
700 1 0 |a Alex Zhavoronkov  |e author 
700 1 0 |a Renat S. Yamidanov  |e author 
700 1 0 |a Renat S. Yamidanov  |e author 
700 1 0 |a Ilya A. Osterman  |e author 
700 1 0 |a Ilya A. Osterman  |e author 
700 1 0 |a Petr V. Sergiev  |e author 
700 1 0 |a Petr V. Sergiev  |e author 
700 1 0 |a Vladimir A. Aladinskiy  |e author 
700 1 0 |a Vladimir A. Aladinskiy  |e author 
700 1 0 |a Anastasia V. Aladinskaya  |e author 
700 1 0 |a Anastasia V. Aladinskaya  |e author 
700 1 0 |a Victor A. Terentiev  |e author 
700 1 0 |a Victor A. Terentiev  |e author 
700 1 0 |a Victor A. Terentiev  |e author 
700 1 0 |a Mark S. Veselov  |e author 
700 1 0 |a Mark S. Veselov  |e author 
700 1 0 |a Mark S. Veselov  |e author 
700 1 0 |a Andrey A. Ayginin  |e author 
700 1 0 |a Andrey A. Ayginin  |e author 
700 1 0 |a Victor G. Kartsev  |e author 
700 1 0 |a Dmitry A. Skvortsov  |e author 
700 1 0 |a Dmitry A. Skvortsov  |e author 
700 1 0 |a Alexey V. Chemeris  |e author 
700 1 0 |a Alexey Kh. Baimiev  |e author 
700 1 0 |a Alina A. Sofronova  |e author 
700 1 0 |a Alexander S. Malyshev  |e author 
700 1 0 |a Gleb I. Filkov  |e author 
700 1 0 |a Dmitry S. Bezrukov  |e author 
700 1 0 |a Dmitry S. Bezrukov  |e author 
700 1 0 |a Bogdan A. Zagribelnyy  |e author 
700 1 0 |a Evgeny O. Putin  |e author 
700 1 0 |a Maria M. Puchinina  |e author 
700 1 0 |a Olga A. Dontsova  |e author 
700 1 0 |a Olga A. Dontsova  |e author 
700 1 0 |a Olga A. Dontsova  |e author 
245 0 0 |a Identification of Novel Antibacterials Using Machine Learning Techniques 
260 |b Frontiers Media S.A.,   |c 2019-08-01T00:00:00Z. 
500 |a 1663-9812 
500 |a 10.3389/fphar.2019.00913 
520 |a Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available in silico models suffer from many drawbacks and, therefore, are not applicable for scoring novel molecules with high structural diversity by their antibacterial potency. Considering this, the overall aim of this study was to develop an efficient in silico model able to find compounds that have plenty of chances to exhibit antibacterial activity. Based on a proprietary screening campaign, we have accumulated a representative dataset of more than 140,000 molecules with antibacterial activity against Escherichia coli assessed in the same assay and under the same conditions. This intriguing set has no analogue in the scientific literature. We applied six in silico techniques to mine these data. For external validation, we used 5,000 compounds with low similarity towards training samples. The antibacterial activity of the selected molecules against E. coli was assessed using a comprehensive biological study. Kohonen-based nonlinear mapping was used for the first time and provided the best predictive power (av. 75.5%). Several compounds showed an outstanding antibacterial potency and were identified as translation machinery inhibitors in vitro and in vivo. For the best compounds, MIC and CC50 values were determined to allow us to estimate a selectivity index (SI). Many active compounds have a robust IP position. 
546 |a EN 
690 |a novel antibacterials 
690 |a machine learning techniques 
690 |a translation inhibitors 
690 |a virtual screening 
690 |a Kohonen-based SOM 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pharmacology, Vol 10 (2019) 
787 0 |n https://www.frontiersin.org/article/10.3389/fphar.2019.00913/full 
787 0 |n https://doaj.org/toc/1663-9812 
856 4 1 |u https://doaj.org/article/8c16a1d4d0ea467faf6fd76819573bdc  |z Connect to this object online.