Preparation, in vitro and in vivo evaluation of a novel mitiglinide microemulsions

This study aimed to prepare an o/w mitiglinide microemulsion (MTGME) to improve the drug solubility and bioavailability. The formulation of o/w MTGME was optimized by the solubility study of drug, pseudo-ternary phase diagram and Box-Behnken design successively. MTGME was characterized by dynamic la...

Full description

Saved in:
Bibliographic Details
Main Authors: Miaomiao Wang (Author), Hanghang Li (Author), Wenzhi Yang (Author)
Format: Book
Published: Elsevier, 2024-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to prepare an o/w mitiglinide microemulsion (MTGME) to improve the drug solubility and bioavailability. The formulation of o/w MTGME was optimized by the solubility study of drug, pseudo-ternary phase diagram and Box-Behnken design successively. MTGME was characterized by dynamic laser light scattering (DLS), zeta potential and transmission electron microscopy (TEM), moreover, the storage stability, pharmacodynamics and pharmacokinetics were investigated. The optimal prescription for MTGME consisted of Maisine 35-1 (oil), Cremophor EL (surfactant) and propylene glycol (PG, cosurfactant). MTGME with a spherical dimension of 58.1 ± 5.86 nm was stable when stored at 4 °C for 3 months. The blood glucose levers (BGL) of diabetic mice were uniformly and significantly decreased by intragastric (i.g.) administration of 1-4 mg/kg MTGME, in which BGL (i.g. 4 mg/kg MTGME) was reduced by 69% during 24 h. The pharmacokinetics study of MTGME (i.g., 20 mg/kg) in Wistar rats showed higher plasma drug concentration (Cmax, 2.9 folds), larger area under curve (AUC, 4.6 folds) and oral bioavailability than those of MTG suspensions. Generally, the MTGME (o/w) showed good effect on controlling hyperglycemia. Therefore, microemulsion can be used as an effective oral drug delivery system to improve the bioavailability of MTG.
Item Description:1319-0164
10.1016/j.jsps.2023.101919