Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells.

Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of...

Full description

Saved in:
Bibliographic Details
Main Authors: Yashdeep Phanse (Author), Brendan M Dunphy (Author), Jillian L Perry (Author), Paul M Airs (Author), Cynthia C H Paquette (Author), Jonathan O Carlson (Author), Jing Xu (Author), J Christopher Luft (Author), Joseph M DeSimone (Author), Barry J Beaty (Author), Lyric C Bartholomay (Author)
Format: Book
Published: Public Library of Science (PLoS), 2015-05-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8e5515e4da4b4fb7a75741bcc0b44112
042 |a dc 
100 1 0 |a Yashdeep Phanse  |e author 
700 1 0 |a Brendan M Dunphy  |e author 
700 1 0 |a Jillian L Perry  |e author 
700 1 0 |a Paul M Airs  |e author 
700 1 0 |a Cynthia C H Paquette  |e author 
700 1 0 |a Jonathan O Carlson  |e author 
700 1 0 |a Jing Xu  |e author 
700 1 0 |a J Christopher Luft  |e author 
700 1 0 |a Joseph M DeSimone  |e author 
700 1 0 |a Barry J Beaty  |e author 
700 1 0 |a Lyric C Bartholomay  |e author 
245 0 0 |a Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells. 
260 |b Public Library of Science (PLoS),   |c 2015-05-01T00:00:00Z. 
500 |a 1935-2727 
500 |a 1935-2735 
500 |a 10.1371/journal.pntd.0003735 
520 |a Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects. 
546 |a EN 
690 |a Arctic medicine. Tropical medicine 
690 |a RC955-962 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n PLoS Neglected Tropical Diseases, Vol 9, Iss 5, p e0003735 (2015) 
787 0 |n http://europepmc.org/articles/PMC4440723?pdf=render 
787 0 |n https://doaj.org/toc/1935-2727 
787 0 |n https://doaj.org/toc/1935-2735 
856 4 1 |u https://doaj.org/article/8e5515e4da4b4fb7a75741bcc0b44112  |z Connect to this object online.