Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we cond...

Full description

Saved in:
Bibliographic Details
Main Authors: David Smith (Author), Robert Reynolds (Author), Marsha A. Raebel (Author), Douglas Roblin (Author), Margaret J. Gunter (Author), Lisa Herrinton (Author), Pamala A. Pawloski (Author), Denise Boudreau (Author), Susan E. Andrade (Author), K. Arnold Chan (Author), Taliser R. Avery (Author), Robert L. Davis (Author), Martin Kulldorff (Author), Andrew Bate (Author), Fang Zhang (Author), Inna Dashevsky (Author), Kenneth R. Petronis (Author), Jeffrey S. Brown (Author)
Format: Book
Published: MDPI AG, 2013-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8eb7d379bd084f9c9bcdc9bae0c49e43
042 |a dc 
100 1 0 |a David Smith  |e author 
700 1 0 |a Robert Reynolds  |e author 
700 1 0 |a Marsha A. Raebel  |e author 
700 1 0 |a Douglas Roblin  |e author 
700 1 0 |a Margaret J. Gunter  |e author 
700 1 0 |a Lisa Herrinton  |e author 
700 1 0 |a Pamala A. Pawloski  |e author 
700 1 0 |a Denise Boudreau  |e author 
700 1 0 |a Susan E. Andrade  |e author 
700 1 0 |a K. Arnold Chan  |e author 
700 1 0 |a Taliser R. Avery  |e author 
700 1 0 |a Robert L. Davis  |e author 
700 1 0 |a Martin Kulldorff  |e author 
700 1 0 |a Andrew Bate  |e author 
700 1 0 |a Fang Zhang  |e author 
700 1 0 |a Inna Dashevsky  |e author 
700 1 0 |a Kenneth R. Petronis  |e author 
700 1 0 |a Jeffrey S. Brown  |e author 
245 0 0 |a Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic 
260 |b MDPI AG,   |c 2013-03-01T00:00:00Z. 
500 |a 10.3390/pharmaceutics5010179 
500 |a 1999-4923 
520 |a Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method-the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds. 
546 |a EN 
690 |a pharmacovigilance 
690 |a drug safety surveillance 
690 |a adverse events data mining 
690 |a gamma Poisson shrinkage 
690 |a tree-based scan statistic 
690 |a Pharmacy and materia medica 
690 |a RS1-441 
655 7 |a article  |2 local 
786 0 |n Pharmaceutics, Vol 5, Iss 1, Pp 179-200 (2013) 
787 0 |n http://www.mdpi.com/1999-4923/5/1/179 
787 0 |n https://doaj.org/toc/1999-4923 
856 4 1 |u https://doaj.org/article/8eb7d379bd084f9c9bcdc9bae0c49e43  |z Connect to this object online.