Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity

Huiting Zhou,1,* Xiaying Lu,2,3,* Jie Huang,1,* Patrick Jordan,2 Shurong Ma,1 Lingqi Xu,1 Fangjie Hu,1 Huan Gui,1 He Zhao,1 Zhenjiang Bai,1 H Paul Redmond,2 Jiang Huai Wang,2 Jian Wang1 1Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou,...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou H (Author), Lu X (Author), Huang J (Author), Jordan P (Author), Ma S (Author), Xu L (Author), Hu F (Author), Gui H (Author), Zhao H (Author), Bai Z (Author), Redmond HP (Author), Wang JH (Author), Wang J (Author)
Format: Book
Published: Dove Medical Press, 2022-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8ed53ff8f4d849ff8f93b0f95c5b7eb4
042 |a dc 
100 1 0 |a Zhou H  |e author 
700 1 0 |a Lu X  |e author 
700 1 0 |a Huang J  |e author 
700 1 0 |a Jordan P  |e author 
700 1 0 |a Ma S  |e author 
700 1 0 |a Xu L  |e author 
700 1 0 |a Hu F  |e author 
700 1 0 |a Gui H  |e author 
700 1 0 |a Zhao H  |e author 
700 1 0 |a Bai Z  |e author 
700 1 0 |a Redmond HP  |e author 
700 1 0 |a Wang JH  |e author 
700 1 0 |a Wang J  |e author 
245 0 0 |a Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity 
260 |b Dove Medical Press,   |c 2022-07-01T00:00:00Z. 
500 |a 1178-7031 
520 |a Huiting Zhou,1,* Xiaying Lu,2,3,* Jie Huang,1,* Patrick Jordan,2 Shurong Ma,1 Lingqi Xu,1 Fangjie Hu,1 Huan Gui,1 He Zhao,1 Zhenjiang Bai,1 H Paul Redmond,2 Jiang Huai Wang,2 Jian Wang1 1Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China; 2Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland; 3Department of Physiology, Gannan Medical University, Ganzhou, People's Republic of China*These authors contributed equally to this workCorrespondence: Jian Wang, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, People's Republic of China, Email wj196312@vip.163.com Jiang Huai Wang, Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland, Email jh.wang@ucc.ieBackground: Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection.Methods: This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates.Results: Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity.Conclusion: These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses.Keywords: trained immunity, inflammatory response, antimicrobial activity, epigenetic reprogramming, intracellular metabolic rewiring, neonatal sepsis 
546 |a EN 
690 |a trained immunity 
690 |a inflammatory response 
690 |a antimicrobial activity 
690 |a epigenetic reprogramming 
690 |a intracellular metabolic rewiring 
690 |a neonatal sepsis 
690 |a Pathology 
690 |a RB1-214 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Journal of Inflammation Research, Vol Volume 15, Pp 3829-3845 (2022) 
787 0 |n https://www.dovepress.com/induction-of-trained-immunity-protects-neonatal-mice-against-microbial-peer-reviewed-fulltext-article-JIR 
787 0 |n https://doaj.org/toc/1178-7031 
856 4 1 |u https://doaj.org/article/8ed53ff8f4d849ff8f93b0f95c5b7eb4  |z Connect to this object online.