Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data

High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of "synthetic data" in training ML algorithms for the detectio...

Full description

Saved in:
Bibliographic Details
Main Authors: Hooman H Rashidi (Author), Imran H Khan (Author), Luke T Dang (Author), Samer Albahra (Author), Ujjwal Ratan (Author), Nihir Chadderwala (Author), Wilson To (Author), Prathima Srinivas (Author), Jeffery Wajda (Author), Nam K Tran (Author)
Format: Book
Published: Elsevier, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_8eef777f25f34c9d9515c4b0cc05ffb4
042 |a dc 
100 1 0 |a Hooman H Rashidi  |e author 
700 1 0 |a Imran H Khan  |e author 
700 1 0 |a Luke T Dang  |e author 
700 1 0 |a Samer Albahra  |e author 
700 1 0 |a Ujjwal Ratan  |e author 
700 1 0 |a Nihir Chadderwala  |e author 
700 1 0 |a Wilson To  |e author 
700 1 0 |a Prathima Srinivas  |e author 
700 1 0 |a Jeffery Wajda  |e author 
700 1 0 |a Nam K Tran  |e author 
245 0 0 |a Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data 
260 |b Elsevier,   |c 2022-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 10.4103/jpi.jpi_75_21 
520 |a High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of "synthetic data" in training ML algorithms for the detection of tuberculosis (TB) from inflammatory biomarker profiles. A retrospective dataset (A) comprised of 278 patients was used to generate synthetic datasets (B, C, and D) for training models prior to secondary validation on a generalization dataset. ML models trained and validated on the Dataset A (real) demonstrated an accuracy of 90%, a sensitivity of 89% (95% CI, 83-94%), and a specificity of 100% (95% CI, 81-100%). Models trained using the optimal synthetic dataset B showed an accuracy of 91%, a sensitivity of 93% (95% CI, 87-96%), and a specificity of 77% (95% CI, 50-93%). Synthetic datasets C and D displayed diminished performance measures (respective accuracies of 71% and 54%). This pilot study highlights the promise of synthetic data as an expedited means for ML algorithm development. 
546 |a EN 
690 |a artificial intelligence 
690 |a biomarkers 
690 |a data accessibility 
690 |a electronic medical record 
690 |a privacy 
690 |a simulation 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 13, Iss 1, Pp 10-10 (2022) 
787 0 |n http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2022;volume=13;issue=1;spage=10;epage=10;aulast=Rashidi 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/8eef777f25f34c9d9515c4b0cc05ffb4  |z Connect to this object online.