High T3 Induces β-Cell Insulin Resistance via Endoplasmic Reticulum Stress

Hyperthyroidism can cause glucose metabolism disorders and insulin resistance. Insulin resistance in muscle and adipose tissues has been extensively studied, whereas investigations on β-cell insulin resistance are limited. This study preliminarily explored the effects of high T3 levels on β-cell lin...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Liang (Author), Liyun Liu (Author), Huibin Huang (Author), Liangyi Li (Author), Jingxiong Zhou (Author)
Format: Book
Published: Hindawi Limited, 2020-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyperthyroidism can cause glucose metabolism disorders and insulin resistance. Insulin resistance in muscle and adipose tissues has been extensively studied, whereas investigations on β-cell insulin resistance are limited. This study preliminarily explored the effects of high T3 levels on β-cell line (MIN6) insulin resistance, as well as the roles of endoplasmic reticulum stress (ERS). In this study, we treated β-cell line with T3, with or without an inhibitor of phosphotyrosine phosphatases (PTPs, sodium vanadate) or ERS inhibitor (4-PBA). The results indicated that high levels of T3 significantly inhibited insulin secretion in β-cell line. In addition, we observed an upregulation of p-IRS-1ser307 and downregulation of Akt. These results can be corrected by sodium vanadate. Moreover, high T3 levels upregulate the ERS-related proteins PERK, IRE1, ATF6, and GRP78, as well as ERS-related apoptosis CHOP and caspase-12. Similarly, this change can be corrected by 4-PBA. These results suggest that high T3 levels can induce insulin resistance in β-cell line by activating ERS and the apoptotic pathway.
Item Description:0962-9351
1466-1861
10.1155/2020/5287108