Antimicrobial effect of different physical and chemical compounds of zinc oxide and graphene oxide added to composite resins

Background: Graphene oxide (GO), a product of graphite, is a candidate for nano-reinforcing cement-based materials due to its good water dispersibility and excellent mechanical properties. On the other hand, zinc oxide (ZnO) is well-known for its antibacterial characteristics as well. Therefore, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Zohre Farhangian (Author), Homayoon Alaghehmand (Author), Hamed Tashakkorian (Author), Faraneh Mokhtarpour (Author), Abolfazl Davoodabadi (Author)
Format: Book
Published: Wolters Kluwer Medknow Publications, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Graphene oxide (GO), a product of graphite, is a candidate for nano-reinforcing cement-based materials due to its good water dispersibility and excellent mechanical properties. On the other hand, zinc oxide (ZnO) is well-known for its antibacterial characteristics as well. Therefore, we aimed to evaluate the impacts of adding ZnO and GO nanoparticles on the antibacterial properties of flowable composites. Materials and Methods: In this, in vitro experimental study was designated into five groups containing: (1) no nanoparticles as control group, (2) 1 wt.% ZnO nanoparticle, (3) 1 wt.% GO, (4) 1 wt.% physical compound of ZnO and GO, and (5) 1 wt.% chemical compound of ZnO and GO. The antibacterial properties of composite resin discs were evaluated by direct contact test. Data were analyzed using a one-way analysis of variance, followed by Tukey's post hoc tests (P = 0.05). Results: Streptococcus mutans colony counting in the first 24 h showed the least growth rate in the chemical compound group (2.2 × 10[5]). However, in 7 days, the least colony number was observed in the GO group (2 × 10[3]). Moreover, the physical compound showed the least bacterial adhesion. Conclusion: Adding GO alone to composites, compared to adding ZnO or physical and chemical compounds of GO-ZnO, was more helpful to increase the antimicrobial characteristics.
Item Description:1735-3327
2008-0255
10.4103/1735-3327.356820