Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients

Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) ser...

Full description

Saved in:
Bibliographic Details
Main Authors: Julia Elrod (Author), Christoph Mohr (Author), Ruben Wolff (Author), Michael Boettcher (Author), Konrad Reinshagen (Author), Pia Bartels (Author), German Burn Registry (Author), Ingo Koenigs (Author)
Format: Book
Published: Frontiers Media S.A., 2021-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_939b71f6e85c4b799c7f3a4d76ee309c
042 |a dc 
100 1 0 |a Julia Elrod  |e author 
700 1 0 |a Julia Elrod  |e author 
700 1 0 |a Christoph Mohr  |e author 
700 1 0 |a Ruben Wolff  |e author 
700 1 0 |a Michael Boettcher  |e author 
700 1 0 |a Michael Boettcher  |e author 
700 1 0 |a Konrad Reinshagen  |e author 
700 1 0 |a Konrad Reinshagen  |e author 
700 1 0 |a Pia Bartels  |e author 
700 1 0 |a German Burn Registry  |e author 
700 1 0 |a Ingo Koenigs  |e author 
700 1 0 |a Ingo Koenigs  |e author 
245 0 0 |a Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients 
260 |b Frontiers Media S.A.,   |c 2021-01-01T00:00:00Z. 
500 |a 2296-2360 
500 |a 10.3389/fped.2020.613736 
520 |a Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) serves as the performance benchmark.Methods: The study is based on pediatric burn patient's data sets from an international burn registry (N = 8,542). Mean absolute error and standard error are calculated for each prediction model (rule of thumb, linear regression, and random forest). Factors contributing to a prolonged stay and the relationship between TBSA and the residual error are analyzed.Results: The random forest-based approach and the linear model are statistically superior to the rule of thumb (p < 0.001, resp. p = 0.009). The residual error rises as TBSA increases for all methods. Factors associated with a prolonged LOS are particularly TBSA, depth of burn, and inhalation trauma.Conclusion: Applying AI-based algorithms to data from large international registries constitutes a promising tool for the purpose of prediction in medicine in the future; however, certain prerequisites concerning the underlying data sets and certain shortcomings must be considered. 
546 |a EN 
690 |a artificial intelligence 
690 |a burns 
690 |a length of hospitalization 
690 |a prediction 
690 |a accuracy 
690 |a paediatric 
690 |a Pediatrics 
690 |a RJ1-570 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pediatrics, Vol 8 (2021) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fped.2020.613736/full 
787 0 |n https://doaj.org/toc/2296-2360 
856 4 1 |u https://doaj.org/article/939b71f6e85c4b799c7f3a4d76ee309c  |z Connect to this object online.