Thyroxine Affects Lipopolysaccharide-Induced Macrophage Differentiation and Myocardial Cell Apoptosis via the NF-κB p65 Pathway Both In Vitro and In Vivo

Background. Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This stud...

Full description

Saved in:
Bibliographic Details
Main Authors: Shan Zhu (Author), Yuan Wang (Author), Hongtao Liu (Author), Wen Wei (Author), Yi Tu (Author), Chuang Chen (Author), Junlong Song (Author), Zhiliang Xu (Author), Juanjuan Li (Author), Changhua Wang (Author), Shengrong Sun (Author)
Format: Book
Published: Hindawi Limited, 2019-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This study aimed at investigating whether thyroxine alleviates LPS-induced myocardial cell apoptosis. Methods. Bone marrow-derived macrophages (Mø) were treated with LPS and thyroxine, and Mø differentiation and Mø-related cytokine expression were measured. The effect of Mø differentiation on mouse cardiomyocyte (MCM) apoptosis was also detected in vitro. In addition, C57BL/6 mice underwent thyroidectomy and were treated with LPS 35 days later; subsequently, Mø differentiation and myocardial cell apoptosis in hearts were analyzed. To determine whether the nuclear factor-kappa B (NF-κB) p65 pathway mediates the effect of thyroxine on Mø differentiation and myocardial cell apoptosis, the specific NF-κB p65 pathway inhibitor JSH-23 was administered to mice that underwent a thyroidectomy. Results. Levothyroxine treatment significantly reduced the activation of the NF-κB p65 pathway, decreased M1 macrophage (Mø1) differentiation and Mø1-related cytokine mRNA levels in LPS-treated Mø, and increased M2 macrophage (Mø2) differentiation and Mø2-related cytokine mRNA expression. The protective effects of levothyroxine on MCM apoptosis mediated by LPS-treated Mø were alleviated by JSH-23. In mice, thyroidectomy aggravated LPS-induced cardiac injury and cardiac dysfunction, further promoted NF-κB p65 activation, and increased cardiac Mø1 expression and myocardial cell apoptosis but decreased cardiac Mø2 expression. JSH-23 treatment significantly ameliorated the thyroidectomy-induced increases in myocardial cell apoptosis and Mø differentiation. Conclusions. Thyroxine alleviated the Mø1/Mø2 imbalance, reduced the inflammatory response, decreased myocardial cell apoptosis, and protected against cardiac injury and cardiac dysfunction in LPS-treated mice. Thyroxine may be a novel therapeutic strategy to prevent and treat LPS-induced cardiac injury.
Item Description:0962-9351
1466-1861
10.1155/2019/2098972