Precision Epidemiology: A Computational Analysis of the Impact of Algorithmic Prediction on the Relationship Between Population Epidemiology and Clinical Epidemiology

ObjectivesPrecision Medicine (PM) uses advanced Machine Learning (ML) techniques and big data to develop personalized treatments, but healthcare still relies on traditional statistical procedures not targeted on individuals. This study investigates the impact of ML on epidemiology.MethodsA quantitat...

Full description

Saved in:
Bibliographic Details
Main Authors: Elena Esposito (Author), Paola Angelini (Author), Sebastian Schneider (Author)
Format: Book
Published: Frontiers Media S.A., 2024-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_9a63bbc1b59e4f3d95825d76c21853c1
042 |a dc 
100 1 0 |a Elena Esposito  |e author 
700 1 0 |a Elena Esposito  |e author 
700 1 0 |a Paola Angelini  |e author 
700 1 0 |a Sebastian Schneider  |e author 
245 0 0 |a Precision Epidemiology: A Computational Analysis of the Impact of Algorithmic Prediction on the Relationship Between Population Epidemiology and Clinical Epidemiology 
260 |b Frontiers Media S.A.,   |c 2024-10-01T00:00:00Z. 
500 |a 1661-8564 
500 |a 10.3389/ijph.2024.1607396 
520 |a ObjectivesPrecision Medicine (PM) uses advanced Machine Learning (ML) techniques and big data to develop personalized treatments, but healthcare still relies on traditional statistical procedures not targeted on individuals. This study investigates the impact of ML on epidemiology.MethodsA quantitative analysis of the articles in PubMed for the years 2000-2019 was conducted to investigate the use of statistical methods and ML in epidemiology. Using structural topic modelling, two groups of topics were identified and analysed over time: topics closer to the clinical side of epidemiology and topics closer to the population side.ResultsThe curve of the prevalence of topics associated with population epidemiology basically corresponds to the curve of the relative statistical methods, while the more dynamic curve of clinical epidemiology broadly reproduces the trend of algorithmic methods.ConclusionThe findings suggest that a renewed separation between clinical epidemiology and population epidemiology is emerging, with clinical epidemiology taking more advantage of recent developments in algorithmic techniques and moving closer to bioinformatics, whereas population epidemiology seems to be slower in this innovation. 
546 |a EN 
690 |a precision medicine 
690 |a algorithmic methods 
690 |a statistical methods 
690 |a population epidemiology 
690 |a clinical epidemiology 
690 |a precision public health 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n International Journal of Public Health, Vol 69 (2024) 
787 0 |n https://www.ssph-journal.org/articles/10.3389/ijph.2024.1607396/full 
787 0 |n https://doaj.org/toc/1661-8564 
856 4 1 |u https://doaj.org/article/9a63bbc1b59e4f3d95825d76c21853c1  |z Connect to this object online.