A Tensor-Based Frequency Features Combination Method for Brain–Computer Interfaces

With the development of the brain-computer interface (BCI) community, motor imagery-based BCI system using electroencephalogram (EEG) has attracted increasing attention because of its portability and low cost. Concerning the multi-channel EEG, the frequency component is one of the most critical feat...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Pei (Author), Zhiguo Luo (Author), Hongyu Zhao (Author), Dengke Xu (Author), Weiguo Li (Author), Ye Yan (Author), Huijiong Yan (Author), Liang Xie (Author), Minpeng Xu (Author), Erwei Yin (Author)
Format: Book
Published: IEEE, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_9ba4cd9b78f840d0a9bd54a2d4ef4978
042 |a dc 
100 1 0 |a Yu Pei  |e author 
700 1 0 |a Zhiguo Luo  |e author 
700 1 0 |a Hongyu Zhao  |e author 
700 1 0 |a Dengke Xu  |e author 
700 1 0 |a Weiguo Li  |e author 
700 1 0 |a Ye Yan  |e author 
700 1 0 |a Huijiong Yan  |e author 
700 1 0 |a Liang Xie  |e author 
700 1 0 |a Minpeng Xu  |e author 
700 1 0 |a Erwei Yin  |e author 
245 0 0 |a A Tensor-Based Frequency Features Combination Method for Brain–Computer Interfaces 
260 |b IEEE,   |c 2022-01-01T00:00:00Z. 
500 |a 1558-0210 
500 |a 10.1109/TNSRE.2021.3125386 
520 |a With the development of the brain-computer interface (BCI) community, motor imagery-based BCI system using electroencephalogram (EEG) has attracted increasing attention because of its portability and low cost. Concerning the multi-channel EEG, the frequency component is one of the most critical features. However, insufficient extraction hinders the development and application of MI-BCIs. To deeply mine the frequency information, we proposed a method called tensor-based frequency feature combination (TFFC). It combined tensor-to-vector projection (TVP), fast fourier transform (FFT), common spatial pattern (CSP) and feature fusion to construct a new feature set. With two datasets, we used different classifiers to compare TFFC with the state-of-the-art feature extraction methods. The experimental results showed that our proposed TFFC could robustly improve the classification accuracy of about 5&#x0025; (<inline-formula> <tex-math notation="LaTeX">${p} &lt; 0.01$ </tex-math></inline-formula>). Moreover, visualization analysis implied that the TFFC was a generalization of CSP and Filter Bank CSP (FBCSP). Also, a complementarity between weighted narrowband features (wNBFs) and broadband features (BBFs) was observed from the averaged fusion ratio. This article certificates the importance of frequency information in the MI-BCI system and provides a new direction for designing a feature set of MI-EEG. 
546 |a EN 
690 |a Brain-computer interface 
690 |a electroencephalogram 
690 |a motor imagery 
690 |a common spatial pattern 
690 |a tensor-to-vector projection 
690 |a fast fourier transformation 
690 |a Medical technology 
690 |a R855-855.5 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 465-475 (2022) 
787 0 |n https://ieeexplore.ieee.org/document/9600883/ 
787 0 |n https://doaj.org/toc/1558-0210 
856 4 1 |u https://doaj.org/article/9ba4cd9b78f840d0a9bd54a2d4ef4978  |z Connect to this object online.