Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells

Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to in...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Jin Ahn (Author), Joo Weon Lim (Author), Hyeyoung Kim (Author)
Format: Book
Published: MDPI AG, 2020-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_9bccfc0533dc4d73ae19a8ed76c551d8
042 |a dc 
100 1 0 |a Yu Jin Ahn  |e author 
700 1 0 |a Joo Weon Lim  |e author 
700 1 0 |a Hyeyoung Kim  |e author 
245 0 0 |a Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells 
260 |b MDPI AG,   |c 2020-11-01T00:00:00Z. 
500 |a 10.3390/antiox9111084 
500 |a 2076-3921 
520 |a Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)-an omega-3 fatty acid-exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10<sup>−8</sup> M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells. 
546 |a EN 
690 |a cerulein 
690 |a docosahexaenoic acid 
690 |a interleukin 6 
690 |a nuclear factor erythroid-2-related factor 2 
690 |a pancreatic acinar cells 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 9, Iss 11, p 1084 (2020) 
787 0 |n https://www.mdpi.com/2076-3921/9/11/1084 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/9bccfc0533dc4d73ae19a8ed76c551d8  |z Connect to this object online.