Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?

The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolas Loménie (Author), Capucine Bertrand (Author), Rutger H.J. Fick (Author), Saima Ben Hadj (Author), Brice Tayart (Author), Cyprien Tilmant (Author), Isabelle Farré (Author), Soufiane Z. Azdad (Author), Samy Dahmani (Author), Gilles Dequen (Author), Ming Feng (Author), Kele Xu (Author), Zimu Li (Author), Sophie Prevot (Author), Christine Bergeron (Author), Guillaume Bataillon (Author), Mojgan Devouassoux-Shisheboran (Author), Claire Glaser (Author), Agathe Delaune (Author), Séverine Valmary-Degano (Author), Philippe Bertheau (Author)
Format: Book
Published: Elsevier, 2022-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_9fabf64a27e84c37b5ea8552ffde4110
042 |a dc 
100 1 0 |a Nicolas Loménie  |e author 
700 1 0 |a Capucine Bertrand  |e author 
700 1 0 |a Rutger H.J. Fick  |e author 
700 1 0 |a Saima Ben Hadj  |e author 
700 1 0 |a Brice Tayart  |e author 
700 1 0 |a Cyprien Tilmant  |e author 
700 1 0 |a Isabelle Farré  |e author 
700 1 0 |a Soufiane Z. Azdad  |e author 
700 1 0 |a Samy Dahmani  |e author 
700 1 0 |a Gilles Dequen  |e author 
700 1 0 |a Ming Feng  |e author 
700 1 0 |a Kele Xu  |e author 
700 1 0 |a Zimu Li  |e author 
700 1 0 |a Sophie Prevot  |e author 
700 1 0 |a Christine Bergeron  |e author 
700 1 0 |a Guillaume Bataillon  |e author 
700 1 0 |a Mojgan Devouassoux-Shisheboran  |e author 
700 1 0 |a Claire Glaser  |e author 
700 1 0 |a Agathe Delaune  |e author 
700 1 0 |a Séverine Valmary-Degano  |e author 
700 1 0 |a Philippe Bertheau  |e author 
245 0 0 |a Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge? 
260 |b Elsevier,   |c 2022-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 10.1016/j.jpi.2022.100149 
520 |a The French Society of Pathology (SFP) organized its first data challenge in 2020 with the help of the Health Data Hub (HDH). The organization of this event first consisted of recruiting nearly 5000 cervical biopsy slides obtained from 20 pathology centers. After ensuring that patients did not refuse to include their slides in the project, the slides were anonymized, digitized, and annotated by expert pathologists, and finally uploaded to a data challenge platform for competitors from around the world. Competing teams had to develop algorithms that could distinguish 4 diagnostic classes in cervical epithelial lesions. Among the many submissions from competitors, the best algorithms achieved an overall score close to 95%. The final part of the competition lasted only 6 weeks, and the goal of SFP and HDH is now to allow for the collection to be published in open access for the scientific community. In this report, we have performed a "post-competition analysis" of the results. We first described the algorithmic pipelines of 3 top competitors. We then analyzed several difficult cases that even the top competitors could not predict correctly. A medical committee of several expert pathologists looked for possible explanations for these erroneous results by reviewing the images, and we present their findings here targeted for a large audience of pathologists and data scientists in the field of digital pathology. 
546 |a EN 
690 |a Artificial intelligence 
690 |a Data challenge 
690 |a Whole slide images 
690 |a Uterine cervix 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 13, Iss , Pp 100149- (2022) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S215335392200743X 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/9fabf64a27e84c37b5ea8552ffde4110  |z Connect to this object online.