Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study

Acute respiratory failure requiring the initiation of invasive mechanical ventilation remains commonplace in the pediatric intensive care unit (PICU). Early recognition of patients at risk for respiratory failure may provide clinicians with the opportunity to intervene and potentially improve outcom...

Full description

Saved in:
Bibliographic Details
Main Authors: Michael C. Spaeder (Author), J. Randall Moorman (Author), Liza P. Moorman (Author), Michelle A. Adu-Darko (Author), Jessica Keim-Malpass (Author), Douglas E. Lake (Author), Matthew T. Clark (Author)
Format: Book
Published: Frontiers Media S.A., 2022-10-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a015e4f2f87b44c0a3209e4f6a64aa5d
042 |a dc 
100 1 0 |a Michael C. Spaeder  |e author 
700 1 0 |a Michael C. Spaeder  |e author 
700 1 0 |a J. Randall Moorman  |e author 
700 1 0 |a J. Randall Moorman  |e author 
700 1 0 |a Liza P. Moorman  |e author 
700 1 0 |a Liza P. Moorman  |e author 
700 1 0 |a Michelle A. Adu-Darko  |e author 
700 1 0 |a Jessica Keim-Malpass  |e author 
700 1 0 |a Jessica Keim-Malpass  |e author 
700 1 0 |a Douglas E. Lake  |e author 
700 1 0 |a Douglas E. Lake  |e author 
700 1 0 |a Matthew T. Clark  |e author 
700 1 0 |a Matthew T. Clark  |e author 
245 0 0 |a Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study 
260 |b Frontiers Media S.A.,   |c 2022-10-01T00:00:00Z. 
500 |a 2296-2360 
500 |a 10.3389/fped.2022.1016269 
520 |a Acute respiratory failure requiring the initiation of invasive mechanical ventilation remains commonplace in the pediatric intensive care unit (PICU). Early recognition of patients at risk for respiratory failure may provide clinicians with the opportunity to intervene and potentially improve outcomes. Through the development of a random forest model to identify patients at risk for requiring unplanned intubation, we tested the hypothesis that subtle signatures of illness are present in physiological and biochemical time series of PICU patients in the early stages of respiratory decompensation. We included 116 unplanned intubation events as recorded in the National Emergency Airway Registry for Children in 92 PICU admissions over a 29-month period at our institution. We observed that children have a physiologic signature of illness preceding unplanned intubation in the PICU. Generally, it comprises younger age, and abnormalities in electrolyte, hematologic and vital sign parameters. Additionally, given the heterogeneity of the PICU patient population, we found differences in the presentation among the major patient groups - medical, cardiac surgical, and non-cardiac surgical. At four hours prior to the event, our random forest model demonstrated an area under the receiver operating characteristic curve of 0.766 (0.738 for medical, 0.755 for cardiac surgical, and 0.797 for non-cardiac surgical patients). The multivariable statistical models that captured the physiological and biochemical dynamics leading up to the event of urgent unplanned intubation in a PICU can be repurposed for bedside risk prediction. 
546 |a EN 
690 |a respiratory failure 
690 |a intensive care units 
690 |a pediatric 
690 |a intubation 
690 |a machine learning 
690 |a child 
690 |a Pediatrics 
690 |a RJ1-570 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pediatrics, Vol 10 (2022) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fped.2022.1016269/full 
787 0 |n https://doaj.org/toc/2296-2360 
856 4 1 |u https://doaj.org/article/a015e4f2f87b44c0a3209e4f6a64aa5d  |z Connect to this object online.