Artificial intelligence for human gunshot wound classification

Certain features are helpful in the identification of gunshot entrance and exit wounds, such as the presence of muzzle imprints, peripheral tears, stippling, bone beveling, and wound border irregularity. Some cases are less straightforward and wounds can thus pose challenges to an emergency room doc...

Πλήρης περιγραφή

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jerome Cheng (Συγγραφέας), Carl Schmidt (Συγγραφέας), Allecia Wilson (Συγγραφέας), Zixi Wang (Συγγραφέας), Wei Hao (Συγγραφέας), Joshua Pantanowitz (Συγγραφέας), Catherine Morris (Συγγραφέας), Randy Tashjian (Συγγραφέας), Liron Pantanowitz (Συγγραφέας)
Μορφή: Βιβλίο
Έκδοση: Elsevier, 2024-12-01T00:00:00Z.
Θέματα:
Διαθέσιμο Online:Connect to this object online.
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a05fad2b5f7744e5801f5e78d24ec598
042 |a dc 
100 1 0 |a Jerome Cheng  |e author 
700 1 0 |a Carl Schmidt  |e author 
700 1 0 |a Allecia Wilson  |e author 
700 1 0 |a Zixi Wang  |e author 
700 1 0 |a Wei Hao  |e author 
700 1 0 |a Joshua Pantanowitz  |e author 
700 1 0 |a Catherine Morris  |e author 
700 1 0 |a Randy Tashjian  |e author 
700 1 0 |a Liron Pantanowitz  |e author 
245 0 0 |a Artificial intelligence for human gunshot wound classification 
260 |b Elsevier,   |c 2024-12-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 10.1016/j.jpi.2023.100361 
520 |a Certain features are helpful in the identification of gunshot entrance and exit wounds, such as the presence of muzzle imprints, peripheral tears, stippling, bone beveling, and wound border irregularity. Some cases are less straightforward and wounds can thus pose challenges to an emergency room doctor or forensic pathologist. In recent years, deep learning has shown promise in various automated medical image classification tasks.This study explores the feasibility of using a deep learning model to classify entry and exit gunshot wounds in digital color images. A collection of 2418 images of entrance and exit gunshot wounds were procured. Of these, 2028 entrance and 1314 exit wounds were cropped, focusing on the area around each gunshot wound. A ConvNext Tiny deep learning model was trained using the Fastai deep learning library, with a train/validation split ratio of 70/30, until a maximum validation accuracy of 92.6% was achieved. An additional 415 entrance and 293 exit wound images were collected for the test (holdout) set. The model achieved an accuracy of 87.99%, precision of 83.99%, recall of 87.71%, and F1-score 85.81% on the holdout set. Correctly classified were 88.19% of entrance wounds and 87.71% of exit wounds. The results are comparable to what a forensic pathologist can achieve without other morphologic cues. This study represents one of the first applications of artificial intelligence to the field of forensic pathology. This work demonstrates that deep learning models can discern entrance and exit gunshot wounds in digital images with high accuracy. 
546 |a EN 
690 |a Artificial intelligence 
690 |a Deep learning 
690 |a Convolutional neural network 
690 |a Human gunshot wound 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 15, Iss , Pp 100361- (2024) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S215335392300175X 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/a05fad2b5f7744e5801f5e78d24ec598  |z Connect to this object online.