AI-accelerated therapeutic antibody development: practical insights

Antibodies represent the largest class of biotherapeutics thanks to their high target specificity, binding affinity and versatility. Recent breakthroughs in Artificial Intelligence (AI) have enabled information-rich in silico representations of antibodies, accurate prediction of antibody structure f...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Santuari (Author), Marianne Bachmann Salvy (Author), Ioannis Xenarios (Author), Bulak Arpat (Author)
Format: Book
Published: Frontiers Media S.A., 2024-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a0b6669d453d4d6fb2f9ee963c3a01ee
042 |a dc 
100 1 0 |a Luca Santuari  |e author 
700 1 0 |a Marianne Bachmann Salvy  |e author 
700 1 0 |a Ioannis Xenarios  |e author 
700 1 0 |a Ioannis Xenarios  |e author 
700 1 0 |a Bulak Arpat  |e author 
245 0 0 |a AI-accelerated therapeutic antibody development: practical insights 
260 |b Frontiers Media S.A.,   |c 2024-09-01T00:00:00Z. 
500 |a 2674-0338 
500 |a 10.3389/fddsv.2024.1447867 
520 |a Antibodies represent the largest class of biotherapeutics thanks to their high target specificity, binding affinity and versatility. Recent breakthroughs in Artificial Intelligence (AI) have enabled information-rich in silico representations of antibodies, accurate prediction of antibody structure from sequence, and the generation of novel antibodies tailored to specific characteristics to optimize for developability properties. Here we summarize state-of-the-art methods for antibody analysis. This valuable resource will serve as a reference for the application of AI methods to the analysis of antibody sequencing datasets. 
546 |a EN 
690 |a LLM 
690 |a ALM (antibody language model) 
690 |a developability 
690 |a inverse folding 
690 |a deep learning 
690 |a artificial intelligence 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Frontiers in Drug Discovery, Vol 4 (2024) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fddsv.2024.1447867/full 
787 0 |n https://doaj.org/toc/2674-0338 
856 4 1 |u https://doaj.org/article/a0b6669d453d4d6fb2f9ee963c3a01ee  |z Connect to this object online.