MODELOS COMPUTACIONAIS FUZZY PARA AVALIAR EFEITOS DA POLUIÇÃO DO AR EM CRIANÇAS

RESUMO Objetivo: Construir um modelo computacional fuzzy para estimar o número de internações de crianças até 10 anos por doenças respiratórias, com base nos dados de poluentes e fatores climáticos da cidade de São José do Rio Preto, Brasil. Métodos: Foi construído modelo computacional u...

Full description

Saved in:
Bibliographic Details
Main Authors: Gleise Silva David (Author), Paloma Maria Silva Rocha Rizol (Author), Luiz Fernando Costa Nascimento (Author)
Format: Book
Published: Sociedade de Pediatria de São Paulo, 2017-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:RESUMO Objetivo: Construir um modelo computacional fuzzy para estimar o número de internações de crianças até 10 anos por doenças respiratórias, com base nos dados de poluentes e fatores climáticos da cidade de São José do Rio Preto, Brasil. Métodos: Foi construído modelo computacional utilizando a lógica fuzzy. O modelo tem 4 entradas, cada uma com 2 funções de pertinência gerando 16 regras, e a saída com 5 funções de pertinência, baseado no método de Mamdani, para estimar a associação entre os poluentes e o número de internações. Os dados de internações, de 2011-2013, foram obtidos no Departamento de Informática do Sistema de Saúde (DATASUS) e os poluentes material particulado (PM10) e dióxido de nitrogênio (NO2), a velocidade do vento e a temperatura foram obtidos pela Companhia Ambiental do Estado de São Paulo (Cetesb). Resultados: Foram internadas 1.161 crianças no período analisado, e a média dos poluentes foi 36 e 51 µg/m3 - PM10 e NO2, respectivamente. Os melhores valores da correlação de Pearson (0,34) e da acurácia avaliada pela curva Receiver Operating Characteristic - ROC (NO2 - 96,7% e PM10 - 90,4%) foram para internações no mesmo dia da exposição. Conclusões: O modelo mostrou-se eficaz na predição do número de internações de crianças, podendo ser utilizado como ferramenta na gestão hospitalar da região estudada.
Item Description:1984-0462
10.1590/1984-0462/;2018;36;1;00013