Pharmacological characterization of a novel, potent, selective, and orally active fatty acid amide hydrolase inhibitor, PKM‐833 [(R)‐N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide] in rats: Potential for the treatment of inflammatory pain

Abstract Recently, we identified a novel fatty acid amide hydrolase (FAAH) inhibitor, PKM‐833 [(R)‐N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide]. The aim of the present study is to characterize the pharmacological profile of PKM‐833 in vitro and in vivo. PKM‐833 sho...

Full description

Saved in:
Bibliographic Details
Main Authors: Toshiya Endo (Author), Takashi Takeuchi (Author), Shunsuke Maehara (Author)
Format: Book
Published: Wiley, 2020-04-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a3750ea67c904ecc8b30bc829e60e18e
042 |a dc 
100 1 0 |a Toshiya Endo  |e author 
700 1 0 |a Takashi Takeuchi  |e author 
700 1 0 |a Shunsuke Maehara  |e author 
245 0 0 |a Pharmacological characterization of a novel, potent, selective, and orally active fatty acid amide hydrolase inhibitor, PKM‐833 [(R)‐N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide] in rats: Potential for the treatment of inflammatory pain 
260 |b Wiley,   |c 2020-04-01T00:00:00Z. 
500 |a 2052-1707 
500 |a 10.1002/prp2.569 
520 |a Abstract Recently, we identified a novel fatty acid amide hydrolase (FAAH) inhibitor, PKM‐833 [(R)‐N‐(pyridazin‐3‐yl)‐4‐(7‐(trifluoromethyl)chroman‐4‐yl)piperazine‐1‐carboxamide]. The aim of the present study is to characterize the pharmacological profile of PKM‐833 in vitro and in vivo. PKM‐833 showed potent inhibitory activities against human and rat FAAH with IC50 values of 8.8 and 10 nmol/L, respectively, 200‐fold more selectivity against other 137 molecular targets, and irreversible mode of action. In pharmacokinetic and pharmacodynamic studies, PKM‐833 showed excellent brain penetration and good oral bioavailability, and elevated anandamide (AEA) concentrations in the rat brain. These data indicate that PKM‐833 is a potent, selective, orally active, and brain‐penetrable FAAH inhibitor. In behavioral studies using rat models, PKM‐833 significantly attenuated formalin‐induced pain responses (3 mg/kg) and improved mechanical allodynia in complete freund's adjuvant (CFA)‐induced inflammatory pain (0.3‐3 mg/kg). On the other hand, PKM‐833 did not show the analgesic effects against mechanical allodynia in chronic constriction injury (CCI)‐induced neuropathic pain up to 30 mg/kg. Regarding side effects, PKM‐833 had no significant effects on catalepsy and motor coordination up to 30 mg/kg. These results indicate that PKM‐833 is a useful pharmacological agent that can be used to investigate the role of FAAH and may have therapeutic potential for the treatment of inflammatory pain without undesirable side effects. 
546 |a EN 
690 |a analgesia 
690 |a anandamide 
690 |a endocannabinoid 
690 |a FAAH 
690 |a PKM‐833 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Pharmacology Research & Perspectives, Vol 8, Iss 2, Pp n/a-n/a (2020) 
787 0 |n https://doi.org/10.1002/prp2.569 
787 0 |n https://doaj.org/toc/2052-1707 
856 4 1 |u https://doaj.org/article/a3750ea67c904ecc8b30bc829e60e18e  |z Connect to this object online.