Efficient fetal size classification combined with artificial neural network for estimation of fetal weight

Objectives: A novel analysis was undertaken to select a significant ultrasonographic parameter (USP) for classifying fetuses to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation. Methods: In total, 2127 singletons were examined by prenatal ultrasoun...

Full description

Saved in:
Bibliographic Details
Main Authors: Yueh-Chin Cheng (Author), Gwo-Lang Yan (Author), Yu Hsien Chiu (Author), Fong-Ming Chang (Author), Chiung-Hsin Chang (Author), Kao-Chi Chung (Author)
Format: Book
Published: Elsevier, 2012-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a417b5b44f31454b8408bb9eb74d0fc1
042 |a dc 
100 1 0 |a Yueh-Chin Cheng  |e author 
700 1 0 |a Gwo-Lang Yan  |e author 
700 1 0 |a Yu Hsien Chiu  |e author 
700 1 0 |a Fong-Ming Chang  |e author 
700 1 0 |a Chiung-Hsin Chang  |e author 
700 1 0 |a Kao-Chi Chung  |e author 
245 0 0 |a Efficient fetal size classification combined with artificial neural network for estimation of fetal weight 
260 |b Elsevier,   |c 2012-12-01T00:00:00Z. 
500 |a 1028-4559 
500 |a 10.1016/j.tjog.2012.09.009 
520 |a Objectives: A novel analysis was undertaken to select a significant ultrasonographic parameter (USP) for classifying fetuses to support artificial neural network (ANN), and thus to enhance the accuracy of fetal weight estimation. Methods: In total, 2127 singletons were examined by prenatal ultrasound within 3 days before delivery. First, correlation analysis was used to determine a significant USP for fetal grouping. Second, K-means algorithm was utilized for fetal size classification based on the selected USP. Finally, stepwise regression analysis was used to examine input parameters of the ANN model. Results: The estimated fetal weight (EFW) of the new model showed mean absolute percent error (MAPE) of 5.26 ± 4.14% and mean absolute error (MAE) of 157.91 ± 119.90 g. Comparison of EFW accuracy showed that the new model significantly outperformed the commonly-used EFW formulas (all p < 0.05). Conclusion: We proved the importance of choosing a specific grouping parameter for ANN to improve EFW accuracy. 
546 |a EN 
690 |a artificial neural network 
690 |a estimated fetal weight 
690 |a ultrasonographic parameter 
690 |a Gynecology and obstetrics 
690 |a RG1-991 
655 7 |a article  |2 local 
786 0 |n Taiwanese Journal of Obstetrics & Gynecology, Vol 51, Iss 4, Pp 545-553 (2012) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1028455912001854 
787 0 |n https://doaj.org/toc/1028-4559 
856 4 1 |u https://doaj.org/article/a417b5b44f31454b8408bb9eb74d0fc1  |z Connect to this object online.