Design, Synthesis, and Evaluation of Niclosamide Analogs as Therapeutic Agents for Enzalutamide-Resistant Prostate Cancer
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic tre...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Book |
Published: |
MDPI AG,
2023-05-01T00:00:00Z.
|
Subjects: | |
Online Access: | Connect to this object online. |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (<b>B9</b>, IC<sub>50</sub> LNCaP95 and 22RV1 = 0.130 and 0.0997 μM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF<sub>3</sub> groups of the most active <b>B9</b> in the sterically favorable field and the presence of the -CN group of the least active <b>B7</b> in the sterically unfavorable field seem to make <b>B9</b> more potent than <b>B7</b> in the antiproliferative activity. |
---|---|
Item Description: | 10.3390/ph16050735 1424-8247 |