VERITAS: Harnessing the power of nomenclature in biologic discovery

ABSTRACTWe are entering an era in which therapeutic proteins are assembled using building block-like strategies, with no standardized schema to discuss these formats. Existing nomenclatures, like AbML, sacrifice human readability for precision. Therefore, considering even a dozen such formats, in co...

Full description

Saved in:
Bibliographic Details
Main Authors: Riti Biswas (Author), Ed Belouski (Author), Kevin Graham (Author), Michelle Hortter (Author), Marissa Mock (Author), Christine E. Tinberg (Author), Alan J. Russell (Author)
Format: Book
Published: Taylor & Francis Group, 2023-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a742f5fea5fa4f1dba7e11771a364ca2
042 |a dc 
100 1 0 |a Riti Biswas  |e author 
700 1 0 |a Ed Belouski  |e author 
700 1 0 |a Kevin Graham  |e author 
700 1 0 |a Michelle Hortter  |e author 
700 1 0 |a Marissa Mock  |e author 
700 1 0 |a Christine E. Tinberg  |e author 
700 1 0 |a Alan J. Russell  |e author 
245 0 0 |a VERITAS: Harnessing the power of nomenclature in biologic discovery 
260 |b Taylor & Francis Group,   |c 2023-12-01T00:00:00Z. 
500 |a 10.1080/19420862.2023.2207232 
500 |a 1942-0870 
500 |a 1942-0862 
520 |a ABSTRACTWe are entering an era in which therapeutic proteins are assembled using building block-like strategies, with no standardized schema to discuss these formats. Existing nomenclatures, like AbML, sacrifice human readability for precision. Therefore, considering even a dozen such formats, in combination with hundreds of possible targets, can create confusion and increase the complexity of drug discovery. To address this challenge, we introduce Verified Taxonomy for Antibodies (VERITAS). This classification and nomenclature scheme is extensible to multispecific therapeutic formats and beyond. VERITAS names are easy to understand while drawing direct connections to the structure of a given format, with or without specific target information, making these names useful to adopt in scientific discourse and as inputs to machine learning algorithms for drug development. 
546 |a EN 
690 |a Antibody engineering 
690 |a antibody formats 
690 |a antibody nomenclature 
690 |a bispecific antibodies 
690 |a multispecific antibodies 
690 |a therapeutic antibodies 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
690 |a Immunologic diseases. Allergy 
690 |a RC581-607 
655 7 |a article  |2 local 
786 0 |n mAbs, Vol 15, Iss 1 (2023) 
787 0 |n https://www.tandfonline.com/doi/10.1080/19420862.2023.2207232 
787 0 |n https://doaj.org/toc/1942-0862 
787 0 |n https://doaj.org/toc/1942-0870 
856 4 1 |u https://doaj.org/article/a742f5fea5fa4f1dba7e11771a364ca2  |z Connect to this object online.