Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach

Background: Preterm birth (PTB) is a growing health issue worldwide, currently considered the leading cause of newborn deaths. To address this challenge, the present work aims to develop an algorithm capable of accurately predicting the week of delivery supporting the identification of a PTB in Braz...

Full description

Saved in:
Bibliographic Details
Main Authors: Thiago Augusto Hernandes Rocha (Author), Erika Bárbara Abreu Fonseca de Thomaz (Author), Dante Grapiuna de Almeida (Author), Núbia Cristina da Silva (Author), Rejane Christine de Sousa Queiroz (Author), Luciano Andrade (Author), Luiz Augusto Facchini (Author), Marcos Luiggi Lemos Sartori (Author), Dalton Breno Costa (Author), Marcos Adriano Garcia Campos (Author), Antônio Augusto Moura da Silva (Author), Catherine Staton (Author), João Ricardo Nickenig Vissoci (Author)
Format: Book
Published: Elsevier, 2021-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a7a8f971ee9d4de898f1f5399ba79c3e
042 |a dc 
100 1 0 |a Thiago Augusto Hernandes Rocha  |e author 
700 1 0 |a Erika Bárbara Abreu Fonseca de Thomaz  |e author 
700 1 0 |a Dante Grapiuna de Almeida  |e author 
700 1 0 |a Núbia Cristina da Silva  |e author 
700 1 0 |a Rejane Christine de Sousa Queiroz  |e author 
700 1 0 |a Luciano Andrade  |e author 
700 1 0 |a Luiz Augusto Facchini  |e author 
700 1 0 |a Marcos Luiggi Lemos Sartori  |e author 
700 1 0 |a Dalton Breno Costa  |e author 
700 1 0 |a Marcos Adriano Garcia Campos  |e author 
700 1 0 |a Antônio Augusto Moura da Silva  |e author 
700 1 0 |a Catherine Staton  |e author 
700 1 0 |a João Ricardo Nickenig Vissoci  |e author 
245 0 0 |a Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach 
260 |b Elsevier,   |c 2021-11-01T00:00:00Z. 
500 |a 2667-193X 
500 |a 10.1016/j.lana.2021.100053 
520 |a Background: Preterm birth (PTB) is a growing health issue worldwide, currently considered the leading cause of newborn deaths. To address this challenge, the present work aims to develop an algorithm capable of accurately predicting the week of delivery supporting the identification of a PTB in Brazil. Methods: This a population-based study analyzing data from 3,876,666 mothers with live births distributed across the 3,929 Brazilian municipalities. Using indicators comprising delivery characteristics, primary care work processes, and physical infrastructure, and sociodemographic data we applied a machine learning-based approach to estimate the week of delivery at the point of care level. We tested six algorithms: eXtreme Gradient Boosting, Elastic Net, Quantile Ordinal Regression - LASSO, Linear Regression, Ridge Regression and Decision Tree. We used the root-mean-square error (RMSE) as a precision. Findings: All models obtained RMSE indexes close to each other. The lower levels of RMSE were obtained using the eXtreme Gradient Boosting approach which was able to estimate the week of delivery within a 2.09 window 95%IC (2.090-2.097). The five most important variables to predict the week of delivery were: number of previous deliveries through Cesarean-Section, number of prenatal consultations, age of the mother, existence of ultrasound exam available in the care network, and proportion of primary care teams in the municipality registering the oral care consultation. Interpretation: Using simple data describing the prenatal care offered, as well as minimal characteristics of the pregnant, our approach was capable of achieving a relevant predictive performance regarding the week of delivery. Funding: Bill and Melinda Gates Foundation, and National Council for Scientific and Technological Development - Brazil, (Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPQ acronym in portuguese) Support of the research project named: Data-Driven Risk Stratification for Preterm Birth in Brazil: Development of a Machine Learning-Based Innovation for Health Care- Grant: OPP1202186 
546 |a EN 
690 |a Preterm Birth 
690 |a Predictive Value of Tests 
690 |a Primary Health Care 
690 |a Appraisal, Health Risk, Machine Learning 
690 |a Public aspects of medicine 
690 |a RA1-1270 
655 7 |a article  |2 local 
786 0 |n The Lancet Regional Health. Americas, Vol 3, Iss , Pp 100053- (2021) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S2667193X21000454 
787 0 |n https://doaj.org/toc/2667-193X 
856 4 1 |u https://doaj.org/article/a7a8f971ee9d4de898f1f5399ba79c3e  |z Connect to this object online.