Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation

The application of multi-dimensional population balance equations (PBEs) for the simulation of granulation processes is recommended due to the multi-component system. Irrespective of the application area, numerical scheme selection for solving multi-dimensional PBEs is driven by the accuracy in (siz...

Full description

Saved in:
Bibliographic Details
Main Authors: Mehakpreet Singh (Author), Ashish Kumar (Author), Saeed Shirazian (Author), Vivek Ranade (Author), Gavin Walker (Author)
Format: Book
Published: MDPI AG, 2020-11-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a8a6bc2406d64db2b4e4811e7b9d14d4
042 |a dc 
100 1 0 |a Mehakpreet Singh  |e author 
700 1 0 |a Ashish Kumar  |e author 
700 1 0 |a Saeed Shirazian  |e author 
700 1 0 |a Vivek Ranade  |e author 
700 1 0 |a Gavin Walker  |e author 
245 0 0 |a Characterization of Simultaneous Evolution of Size and Composition Distributions Using Generalized Aggregation Population Balance Equation 
260 |b MDPI AG,   |c 2020-11-01T00:00:00Z. 
500 |a 10.3390/pharmaceutics12121152 
500 |a 1999-4923 
520 |a The application of multi-dimensional population balance equations (PBEs) for the simulation of granulation processes is recommended due to the multi-component system. Irrespective of the application area, numerical scheme selection for solving multi-dimensional PBEs is driven by the accuracy in (size) number density prediction alone. However, mixing the components, i.e., the particles (excipients and API) and the binding liquid, plays a crucial role in predicting the granule compositional distribution during the pharmaceutical granulation. A numerical scheme should, therefore, be able to predict this accurately. Here, we compare the cell average technique (CAT) and finite volume scheme (FVS) in terms of their accuracy and applicability in predicting the mixing state. To quantify the degree of mixing in the system, the sum-square <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-formula> parameter is studied to observe the deviation in the amount binder from its average. It has been illustrated that the accurate prediction of integral moments computed by the FVS leads to an inaccurate prediction of the <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-formula> parameter for a bicomponent population balance equation. Moreover, the cell average technique (CAT) predicts the moments with moderate accuracy; however, it computes the mixing of components <inline-formula><math display="inline"><semantics><msup><mi>χ</mi><mn>2</mn></msup></semantics></math></inline-formula> parameter with higher precision than the finite volume scheme. The numerical testing is performed for some benchmarking kernels corresponding to which the analytical solutions are available in the literature. It will be also shown that both numerical methods equally well predict the average size of the particles formed in the system; however, the finite volume scheme takes less time to compute these results. 
546 |a EN 
690 |a aggregation 
690 |a finite volume scheme 
690 |a cell average technique 
690 |a mixing of components 
690 |a integral moments 
690 |a Pharmacy and materia medica 
690 |a RS1-441 
655 7 |a article  |2 local 
786 0 |n Pharmaceutics, Vol 12, Iss 12, p 1152 (2020) 
787 0 |n https://www.mdpi.com/1999-4923/12/12/1152 
787 0 |n https://doaj.org/toc/1999-4923 
856 4 1 |u https://doaj.org/article/a8a6bc2406d64db2b4e4811e7b9d14d4  |z Connect to this object online.