Insulin Induces Internalization of the Plasma Membrane 5-Hydroxytryptamine2A (5-HT2A) Receptor in the Isolated Human Endothelium-Denuded Saphenous Vein via the Phosphatidylinositol 3-Kinase Pathway

The aim of this study was to investigate the relaxant effect of insulin on the 5-hydroxytryptamine (5-HT)-induced constriction of the human endothelium-denuded saphenous vein (SV) and its signal transduction pathway. During the 5-HT-induced sustained constriction of vessels, insulin induced vasorela...

Full description

Saved in:
Bibliographic Details
Main Authors: Tasuku Kanai (Author), Masachika Kuwabara (Author), Naoko Tanaka-Totoribe (Author), Eisaku Nakamura (Author), Yasuko Matsuo (Author), Shuji Gamoh (Author), Akito Suzuki (Author), Yujiro Asada (Author), Hiroaki Hisa (Author), Ryuichi Yamamoto (Author)
Format: Book
Published: Elsevier, 2012-01-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_a9c200d02b4e4e24925a7308fabc3ad5
042 |a dc 
100 1 0 |a Tasuku Kanai  |e author 
700 1 0 |a Masachika Kuwabara  |e author 
700 1 0 |a Naoko Tanaka-Totoribe  |e author 
700 1 0 |a Eisaku Nakamura  |e author 
700 1 0 |a Yasuko Matsuo  |e author 
700 1 0 |a Shuji Gamoh  |e author 
700 1 0 |a Akito Suzuki  |e author 
700 1 0 |a Yujiro Asada  |e author 
700 1 0 |a Hiroaki Hisa  |e author 
700 1 0 |a Ryuichi Yamamoto  |e author 
245 0 0 |a Insulin Induces Internalization of the Plasma Membrane 5-Hydroxytryptamine2A (5-HT2A) Receptor in the Isolated Human Endothelium-Denuded Saphenous Vein via the Phosphatidylinositol 3-Kinase Pathway 
260 |b Elsevier,   |c 2012-01-01T00:00:00Z. 
500 |a 1347-8613 
500 |a 10.1254/jphs.11172FP 
520 |a The aim of this study was to investigate the relaxant effect of insulin on the 5-hydroxytryptamine (5-HT)-induced constriction of the human endothelium-denuded saphenous vein (SV) and its signal transduction pathway. During the 5-HT-induced sustained constriction of vessels, insulin induced vasorelaxation in a concentration-dependent manner. This insulin-induced vasorelaxation was partially attenuated by L-NAME, a nitric oxide synthase (NOS) inhibitor, and was abolished by wortmannin, a phosphatidylinositol 3-kinase (PI3-K) inhibitor. Insulin increased the Ser473 phosphorylation of Akt. Endothelial NOS and inducible NOS protein expressions were observed in SV smooth muscle when insulin induced relaxation of SV vessels preconstricted with 5-HT. Although insulin did not affect the total protein level of 5-HT2A receptors, it decreased the particulate protein level and reciprocally increased the soluble protein level of 5-HT2A receptors in a concentration-dependent manner. These results demonstrate that insulin can induce the internalization of 5-HT2A receptors from the plasma membrane to the cytoplasm. The insulin-induced internalization of 5-HT2A receptors was abolished by wortmannin but was not affected by L-NAME. These results suggest that the relaxant effect of insulin on 5-HT-induced vasoconstriction is mediated in part by the internalization of plasma membrane 5-HT2A receptors and the production of nitric oxide via the PI3-K/Akt pathway. Keywords:: insulin-induced vasorelaxation, saphenous vein (SV), internalization of 5-HT2A receptor, diabetes mellitus (DM), nitric oxide (NO) 
546 |a EN 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Journal of Pharmacological Sciences, Vol 118, Iss 2, Pp 178-185 (2012) 
787 0 |n http://www.sciencedirect.com/science/article/pii/S1347861319305778 
787 0 |n https://doaj.org/toc/1347-8613 
856 4 1 |u https://doaj.org/article/a9c200d02b4e4e24925a7308fabc3ad5  |z Connect to this object online.