The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from <i>Citrus</i> Genus

Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydr...

Full description

Saved in:
Bibliographic Details
Main Authors: Gianfranco Fontana (Author), Maurizio Bruno (Author), Francesco Sottile (Author), Natale Badalamenti (Author)
Format: Book
Published: MDPI AG, 2022-12-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the −OH at various positions. These compounds are particular to <i>Citrus</i> genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of <i>Citrus</i> fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Item Description:10.3390/antiox12010023
2076-3921