Automated identification of innocent Still's murmur using a convolutional neural network

BackgroundStill's murmur is the most prevalent innocent heart murmur of childhood. Auscultation is the primary clinical tool to identify this murmur as innocent. Whereas pediatric cardiologists routinely perform this task, primary care providers are less successful in distinguishing Still'...

Full description

Saved in:
Bibliographic Details
Main Authors: Raj Shekhar (Author), Ganesh Vanama (Author), Titus John (Author), James Issac (Author), Youness Arjoune (Author), Robin W. Doroshow (Author)
Format: Book
Published: Frontiers Media S.A., 2022-09-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_ad86f1b6825944ea89c6b4adb53ac93b
042 |a dc 
100 1 0 |a Raj Shekhar  |e author 
700 1 0 |a Raj Shekhar  |e author 
700 1 0 |a Ganesh Vanama  |e author 
700 1 0 |a Titus John  |e author 
700 1 0 |a Titus John  |e author 
700 1 0 |a James Issac  |e author 
700 1 0 |a Youness Arjoune  |e author 
700 1 0 |a Robin W. Doroshow  |e author 
700 1 0 |a Robin W. Doroshow  |e author 
700 1 0 |a Robin W. Doroshow  |e author 
245 0 0 |a Automated identification of innocent Still's murmur using a convolutional neural network 
260 |b Frontiers Media S.A.,   |c 2022-09-01T00:00:00Z. 
500 |a 2296-2360 
500 |a 10.3389/fped.2022.923956 
520 |a BackgroundStill's murmur is the most prevalent innocent heart murmur of childhood. Auscultation is the primary clinical tool to identify this murmur as innocent. Whereas pediatric cardiologists routinely perform this task, primary care providers are less successful in distinguishing Still's murmur from the murmurs of true heart disease. This results in a large number of children with a Still's murmur being referred to pediatric cardiologists.ObjectivesTo develop a computer algorithm that can aid primary care providers to identify the innocent Still's murmur at the point of care, to substantially decrease over-referral.MethodsThe study included Still's murmurs, pathological murmurs, other innocent murmurs, and normal (i.e., non-murmur) heart sounds of 1,473 pediatric patients recorded using a commercial electronic stethoscope. The recordings with accompanying clinical diagnoses provided by a pediatric cardiologist were used to train and test the convolutional neural network-based algorithm.ResultsA comparative analysis showed that the algorithm using only the murmur sounds recorded at the lower left sternal border achieved the highest accuracy. The developed algorithm identified Still's murmur with 90.0% sensitivity and 98.3% specificity for the default decision threshold. The area under the receiver operating characteristic curve was 0.943.ConclusionsStill's murmur can be identified with high accuracy with the algorithm we developed. Using this approach, the algorithm could help to reduce the rate of unnecessary pediatric cardiologist referrals and use of echocardiography for a common benign finding. 
546 |a EN 
690 |a Still's murmur 
690 |a innocent heart murmur 
690 |a convolutional neural network 
690 |a automated identification 
690 |a artificial intelligence 
690 |a Pediatrics 
690 |a RJ1-570 
655 7 |a article  |2 local 
786 0 |n Frontiers in Pediatrics, Vol 10 (2022) 
787 0 |n https://www.frontiersin.org/articles/10.3389/fped.2022.923956/full 
787 0 |n https://doaj.org/toc/2296-2360 
856 4 1 |u https://doaj.org/article/ad86f1b6825944ea89c6b4adb53ac93b  |z Connect to this object online.