Calculating the Aqueous pK<sub>a</sub> of Phenols: Predictions for Antioxidants and Cannabinoids

We aim to develop a theoretical methodology for the accurate aqueous pK<sub>a</sub> prediction of structurally complex phenolic antioxidants and cannabinoids. In this study, five functionals (M06-2X, B3LYP, BHandHLYP, PBE0, and TPSS) and two solvent models (SMD and PCM) were combined wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Max Walton-Raaby (Author), Tyler Floen (Author), Guillermo García-Díez (Author), Nelaine Mora-Diez (Author)
Format: Book
Published: MDPI AG, 2023-07-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b07295c1119f40e982b47b3b34d877e6
042 |a dc 
100 1 0 |a Max Walton-Raaby  |e author 
700 1 0 |a Tyler Floen  |e author 
700 1 0 |a Guillermo García-Díez  |e author 
700 1 0 |a Nelaine Mora-Diez  |e author 
245 0 0 |a Calculating the Aqueous pK<sub>a</sub> of Phenols: Predictions for Antioxidants and Cannabinoids 
260 |b MDPI AG,   |c 2023-07-01T00:00:00Z. 
500 |a 10.3390/antiox12071420 
500 |a 2076-3921 
520 |a We aim to develop a theoretical methodology for the accurate aqueous pK<sub>a</sub> prediction of structurally complex phenolic antioxidants and cannabinoids. In this study, five functionals (M06-2X, B3LYP, BHandHLYP, PBE0, and TPSS) and two solvent models (SMD and PCM) were combined with the 6-311++G(d,p) basis set to predict pK<sub>a</sub> values for twenty structurally simple phenols. None of the direct calculations produced good results. However, the correlations between the calculated Gibbs energy difference of each acid and its conjugate base, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="normal">G</mi></mrow><mrow><mi>a</mi><mi>q</mi><mo>(</mo><mi>B</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="normal">G</mi></mrow><mrow><mi>a</mi><mi>q</mi><mfenced separators="|"><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></mfenced></mrow><mrow><mo>°</mo></mrow></msubsup><mo>−</mo><msubsup><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="normal">G</mi></mrow><mrow><mi>a</mi><mi>q</mi><mo>(</mo><mi>H</mi><mi>A</mi><mo>)</mo></mrow><mrow><mo>°</mo></mrow></msubsup></mrow></semantics></math></inline-formula>, and the experimental aqueous pK<sub>a</sub> values had superior predictive accuracy, which was also tested relative to an independent set of ten molecules of which six were structurally complex phenols. New correlations were built with twenty-seven phenols (including the phenols with experimental pK<sub>a</sub> values from the test set), which were used to make predictions. The best correlation equations used the PCM method and produced mean absolute errors of 0.26-0.27 pK<sub>a</sub> units and R<sup>2</sup> values of 0.957-0.960. The average range of predictions for the potential antioxidants (cannabinoids) was 0.15 (0.25) pK<sub>a</sub> units, which indicates good agreement between our methodologies. The new correlation equations could be used to make pK<sub>a</sub> predictions for other phenols in water and potentially in other solvents where they might be more soluble. 
546 |a EN 
690 |a acid dissociation constant 
690 |a pK<sub>a</sub> 
690 |a phenols 
690 |a predictions 
690 |a antioxidants 
690 |a cannabinoids 
690 |a Therapeutics. Pharmacology 
690 |a RM1-950 
655 7 |a article  |2 local 
786 0 |n Antioxidants, Vol 12, Iss 7, p 1420 (2023) 
787 0 |n https://www.mdpi.com/2076-3921/12/7/1420 
787 0 |n https://doaj.org/toc/2076-3921 
856 4 1 |u https://doaj.org/article/b07295c1119f40e982b47b3b34d877e6  |z Connect to this object online.