Minimize the sum of the error boxes in the multi-linear regression model using the genetic algorithm

Regression models are regarded as the most important ones used in statistical models in defining the relation among variables through the available data which can be applied to various sciences . In most of these applications , there is a dependent variable and independent variables and the linear r...

Full description

Saved in:
Bibliographic Details
Main Author: Hamsa Mohammed (Author)
Format: Book
Published: College of Education for Pure Sciences, 2018-03-01T00:00:00Z.
Subjects:
Online Access:Connect to this object online.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b0b6f5b16b4f41a7b1fc8ef0c42efdf4
042 |a dc 
100 1 0 |a Hamsa Mohammed  |e author 
245 0 0 |a Minimize the sum of the error boxes in the multi-linear regression model using the genetic algorithm 
260 |b College of Education for Pure Sciences,   |c 2018-03-01T00:00:00Z. 
500 |a 1812-125X 
500 |a 2664-2530 
500 |a 10.33899/edusj.2018.147585 
520 |a Regression models are regarded as the most important ones used in statistical models in defining the relation among variables through the available data which can be applied to various sciences . In most of these applications , there is a dependent variable and independent variables and the linear relation between them represents multiple linear regression function . The values of the dependent variable can be predicted when the independent variables take definite values and the model's parameters are estimated through minimizing deviation of squares among the values of the real and estimated data. In this research we use the genetic algorithm to find the minimum sum of error squares, where they are applied to different data in many applications . The genetic algorithm is able to achieve the minimum sum of error squares and estimating the parameters of the model. 
546 |a AR 
546 |a EN 
690 |a regression models 
690 |a statistical models 
690 |a linear regression 
690 |a Education 
690 |a L 
690 |a Science (General) 
690 |a Q1-390 
655 7 |a article  |2 local 
786 0 |n مجلة التربية والعلم, Vol 27, Iss 2, Pp 118-129 (2018) 
787 0 |n https://edusj.mosuljournals.com/article_147585_494047b0531299bea00a9b16790b9d9a.pdf 
787 0 |n https://doaj.org/toc/1812-125X 
787 0 |n https://doaj.org/toc/2664-2530 
856 4 1 |u https://doaj.org/article/b0b6f5b16b4f41a7b1fc8ef0c42efdf4  |z Connect to this object online.