TMARKER: A free software toolkit for histopathological cell counting and staining estimation

Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell size...

Бүрэн тодорхойлолт

-д хадгалсан:
Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Peter J Schüffler (Зохиогч), Thomas J Fuchs (Зохиогч), Cheng Soon Ong (Зохиогч), Peter J Wild (Зохиогч), Niels J Rupp (Зохиогч), Joachim M Buhmann (Зохиогч)
Формат: Ном
Хэвлэсэн: Elsevier, 2013-01-01T00:00:00Z.
Нөхцлүүд:
Онлайн хандалт:Connect to this object online.
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000 am a22000003u 4500
001 doaj_b1869bfe173a406f99b85f94e00ce3fc
042 |a dc 
100 1 0 |a Peter J Schüffler  |e author 
700 1 0 |a Thomas J Fuchs  |e author 
700 1 0 |a Cheng Soon Ong  |e author 
700 1 0 |a Peter J Wild  |e author 
700 1 0 |a Niels J Rupp  |e author 
700 1 0 |a Joachim M Buhmann  |e author 
245 0 0 |a TMARKER: A free software toolkit for histopathological cell counting and staining estimation 
260 |b Elsevier,   |c 2013-01-01T00:00:00Z. 
500 |a 2153-3539 
500 |a 2153-3539 
500 |a 10.4103/2153-3539.109804 
520 |a Background: Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. Methods: We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. Results: Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. Conclusion: We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types. 
546 |a EN 
690 |a Color deconvolution 
690 |a pathology 
690 |a nuclei detection 
690 |a superpixel classification 
690 |a segmentation staining estimation 
690 |a Computer applications to medicine. Medical informatics 
690 |a R858-859.7 
690 |a Pathology 
690 |a RB1-214 
655 7 |a article  |2 local 
786 0 |n Journal of Pathology Informatics, Vol 4, Iss 2, Pp 2-2 (2013) 
787 0 |n http://www.jpathinformatics.org/article.asp?issn=2153-3539;year=2013;volume=4;issue=2;spage=2;epage=2;aulast=Schüffler 
787 0 |n https://doaj.org/toc/2153-3539 
787 0 |n https://doaj.org/toc/2153-3539 
856 4 1 |u https://doaj.org/article/b1869bfe173a406f99b85f94e00ce3fc  |z Connect to this object online.